All Posts By

Natanael Hizkia

Kebisingan kontrol valve

Kebisingan Kontrol Valve

By | Uncategorized

Kebisingan yang ditimbulan oleh control valve berasal dari aliran turbulen fluida yang melewati valve akibat pressure drop dari valve tersebut. Saat fluida melewati valve, terjadi perubahan arah dan kecepatan yang menyebabkan turbulensi dan vortex sehingga menimbulkan bunyi.

Saat tekanan dari cairan yang melewati valve jatuh dibawah tekanan uapnya, gelembung dapat terbentuk dan meletup secara cepat, membentuk shock wave yang menimbulkan kebisingan. Terbentuk dan meletupnya gelembung uap pada cairan mengalir disebut dengan kavitasi (cavitation).

Seberapa parahnya kebisingan dari kavitasi bergantung pada beberapa faktor, diantara adalah pressure drop pada valve, karakteristik fluida (seperti masa jenis dan viskositas), dan desain valve itu sendiri. Beberapa metoda yang biasa digunakan untuk mengurangi kebisingan dari kavitasi antara lain:

  1. Memperbesar ukuran valve: valve yang lebih besar dapat mereduksi kecepatan aliran fluida pada valve, sehingga dapat mengurangi kemungkinan kavitasi pada valve.
  2. Menggunakan valve trim lain: Valve trim adalah komponen internal valve dimana terjadi kontak dengan fluida.
  3. Menggunakan desain valve trim lain seperti multistage trim atau cage-guided trim yang dapat mengurangi terjadinya kavitasi.
  4. Menggunakan material lain: Material valve seperti hardened steel dapat mengurangi terjadinya kavitasi dibandingkan material lain.
  5. Menggunakan noise-reducing insert: Noise-reducing insert, seperti diffuser atau orifice dapat diinstall pada downstream valve untuk mengurangi kebisingan yang diakibatkan kavitasi.

Metoda-metoda diatas dapat mengurangi kebisingan akibat kavitasi, tetapi perlu diingat bahwa kebisingan akibat kavitasi bisa jadi tidak hilang sepenuhnya meskipun pengendalian bising telah dilakukan. Pada beberapa kasus, metoda pengendalian bising yang lain seperti penggunaan noise barrier atau penggunaan earplug dan earmuff tetap perlu dilakukan.

Kebisingan yang diakibatkan oleh control valve dapat menjadi masalah karena beberapa alasan. Misalnya, kebisingan pada area kerja dapat mengganggu pekerja yang bekerja pada area tersebut, dan bahkan dapat dikategorikan sebagai gangguan terhadap safety jika mengganggu komunikasi atau mengakibatkan distraksi. Kebisingan juga bisa menjadi indikasi adanya getaran pada peralatan dan juga struktur yang tidak baik untuk kesehatan peraltan dan struktur tersebut.

Tingkat kebisingan dari control valve dapat dihitung dan ditentukan menggunakan beberapa metoda yaitu persamaan empiris, simulasi computational fluid dynamics (CFD), dan pengukuran experimental:

  1. Persamaan empiris: Terdapat persamaan matematis untuk menghubungkan tingkat kebisingan dari control valve ke parameter lainnya seperti flow rate dan pressure drop. Persamaan tersebut salah satunya adalah persamaan Masoneilan-Kates, yang umum digunakan di industri. Persamaan tersebut adalah:

 

Lp = K1 + K2 * log10(Q) + K3 * log10(P1-P2) + K4 * log10(Q) * log10(P1-P2)

 

Dimana Lp adalah tingkat tekanan suara (SPL) dengan satuan desibel (dB), Q adalah volumetric flow rate dengan satuan meter kubik per jam (m3/h), P1 adalah tekanan upstream dalam kilopaskal (KPa), dan P2 adalah tekanan downstream dalam kilopaskal (KPa). K1, K2, K3, dan K4 adalah konstanta yang bergantung pada ukuran valve, tipe dan karakteristik valve.

  1. Simulasi Computational Fluid Dynamics (CFD): Simulasi CFD menggunakana software komputer untuk memodelkan aliran fluida yang melewati control valve dan dapat memprediksi tingkat kebisingan. Simulasi ini dapat menghasilkan informasi detail mengenai pola aliran dan turbulensi yang mengakibatkan kebisingan. Akan tetapi, simulasi CFD membutuhkan daya komputasi yang besar dan keahlian khusus untuk dapat dilakukan.
  2. Pengukuran experimental: Pengukuran experimental dilakukan dengan menginstall control valve pada test rig dan mengukur kebisingannya menggunakan sound level meter. Metoda ini menghasilkan output yang langsung dan akurat, tetapi membutuhkan waktu dan biaya yang tidak sedikit.

Secara umum, pemilihan metoda kalkulasi dan penentuan noise level bergantung pada tingkat akurasi yang diinginkan, fasilitas yang tersedia dan keahlian yang dimiliki.

Propagasi suara di luar ruangan – hubungan antara daya suara, intensitas suara dan tekanan suara

Propagasi suara di luar ruangan – hubungan antara daya suara, intensitas suara dan tekanan suara

By | All, Articles, blog, News, Uncategorized

Tulisan ini akan membahas propagasi suara di luar ruangan, terutama hubungan antara daya suara, intensitas suara dan tekanan suara di luar ruangan. Kondisi luar ruangan yang dimaksud adalah kondisi hemi freefield dimana sumber suara titik berada diatas tanah dan tidak ada pantulan suara dari sumber ke penerima.

Sebelum kita membahas mengenai propagasi, mari kita definisikan terlebih dahulu beberapa terminologi yang akan kita perlukan sebagai berikut:

Daya Suara

Daya suara adalah energi suara per satuan waktu yang dikeluarkan oleh sumber suara. Satuan daya suara yang biasa digunakan adalah watt (Joule per detik). Akan tetapi, dalam kehidupan sehari-hari pada bidang enjiniring, daya suara lebih sering dinyatakan dengan tingkat daya suara (disimbolkan SWL atau Lw). Tingkat daya suara dapat dinyatakan sebagai berikut:

Karena daya suara hanya mendeskripsikan sumber, tanpa mendeskripsikan lokasi penerima dan kondisi lingkungan sekitar sumber suara, tingkat daya suara menjadi besaran yang dapat digunakan untuk mendeskripsikan sumber suara.

Intensitas suara

Intensitas suara didefinisikan sebagai daya suara dibagi dengan luasan yang dilingkupi oleh daya suara tersebut. Intensitas suara dapat juga dinyatakan secara logaritmik yaitu dengan tingkat intensitas suara (disimbolah SIL atau Li).

Hal ini menyebabkan besarnya intensitas suara bergantung pada jarak antara sumber dan penerima, karena semakin jauh penerima dari sumber, maka area yang harus dilingkupi oleh daya suara tersebut semakin luas. Hal ini dapat dianalogikan seperti sebuah senter yang diarahkan ke sebuah dinding. Semakin dekat senter ke dinding, maka iluminansi cahaya pada dinding yang terkena cahaya senter semakin tinggi (semakin terang), tetapi areanya semakin kecil, dan semakin jauh senter ke dinding, iluminansi cahaya pada dinding semakin rendah (semakin redup) karena area yang harus dicover oleh cahaya yang dikeluarkan oleh senter semakin besar.

Pada kondisi free-field, maka area yang dicover oleh sumber suara titik berbentuk bola sehingga hubungan antara intensitas dan daya suara adalah sebagai berikut:

Dimana r adalah jarak dari sumber ke penerima.

Pada propagasi di luar ruangan, suara berpropagasi dengan bentuk setengah bola karena sumber suara berada diatas tanah. Oleh karena itu, hubungan intensitas suara dengan daya suara menjadi seperti berikut:

Tekanan Suara

Adanya rambatan suara pada medium menyebabkan adanya fluktuasi tekanan yang biasa disebut dengan tekanan suara atau tekanan akustik. Nilai efektif (RMS) dari fluktuasi tekanan ini dapat dinyatakan secara logaritmik dan disebut tingkat tekanan suara (disimbolkan SPL atau Lp) sebagai berikut:

Tingkat tekanan suara ini bersesuaian dengan loudness atau kerasnya suara yang didengar telinga sehingga digunakan untuk mendeskripsikan seberapa keras suara yang didapatkan oleh penerima suara.

Hubungan antara intensitas suara, tekanan suara dan daya suara di luar ruangan

Hubungan antara intensitas suara, tekanan suara dan daya suara adalah sebagai berikut:

Dimana p adalah densitas medium dan c adalah cepat rambat suara pada medium tersebut.

Untuk dapat menghitung suara yang diterima oleh penerima suara dari sumber tertentu, maka kita perlu untuk mengetahui hubungan dari tingkat daya suara sumber ke tingkat tekanan suara pada penerima. Hubungan Lp dengan Lw untuk sumber titik pada kondisi free field adalah sebagai berikut

Q adalah directivity factor yang bergantung pada lokasi sumber terhadap permukaan terdekat. Nilai Q dan DI adalah sebagai berikut:

Dengan kata lain, nilai Q bergantung pada bentuk propagasi sumber suara yaitu 1/Q bola. Jika bentuk sumber suara adalah bola maka nilai Q=1, jika setengah bola (1/2), maka nilai Q adalah 2, jika seperempat bola (1/4), maka nilai Q adalah 4, jika seperdelapan bola (1/8) maka nilai Q adalah 8.

Disamping jarak dan lokasi sumber terhadap permukaan, terdapat beberapa koreksi lain yang digunakan sehingga perhitungan dapat lebih akurat. Sebagai contoh, terdapat beberapa koreksi pada ISO 9613-2 (Acoustics – Attenuation of sound during propagation outdoors – Part 2: General method of calculation) untuk perhitungan propagasi luar ruangan sebagai berikut:

  • Absorpsi atmosfer: Atmosfer dapat menyerap suara dimana nilai atenuasinya bergantung pada temperatur dan kelembapan udara dimana suara berpropagasi.
  • Efek pantulan dari tanah: Jenis tanah dapat mempengaruhi besarnya pantulan suara yang diterima oleh penerima suara. Di standar ini, terdapat tiga kategori tanah yang didefinisikan yaitu keras, berpori dan campuran.
  • Penghalang: Jika sumber dan penerima terhalang oleh suatu benda, misalkan dinding, maka efek dari difrasi suara akibat penghalang ini perlu diperhitungkan.
  • Pantulan: Pantulan dari benda lain, misalkan gedung, dapat mempengaruhi besarnya tingkat suara yang diterima oleh penerima suara.
  • Koreksi meteorologi: Koreksi untuk kondisi meteorologi jika kondisi tidak sesuai dengan yang disyaratkan oleh ISO 9613 (downwind condition)

Regulasi, pedoman dan standar terkait kebisingan lingkungan di Indonesia

By | All, Articles, Kebisingan, News, Uncategorized, Vibration | No Comments

Dengan banyaknya pembangunan, aktivitas industri dan aktivitas masyarakat pada umumnya di Indonesia, kebisingan telah menjadi salah satu permasalahan yang menjadi perhatian di berbagi daerah. Indonesia sendiri sebetulnya sudah memiliki berbagai perangkat baik regulasi, pedoman dan standar sehingga tingkat kebisingan dapat terkontrol. Hal ini penting terutama untuk mendukung kesehatan masyarakat dan juga untuk memberikan kepastian pada penganggaran investasi pada proyek-proyek yang pada fase operasinya akan menghasilkan bising.

Berikut adalah regulasi, standar dan panduan terkait kebisingan lingkungan di Indonesia.

Regulasi Kebisingan Lingkungan

Regulasi terkait kebisingan lingkungan secara umum dapat dibagi menjadi dua yaitu regulasi untuk emisi dan juga regulasi untuk penerima. Regulasi emisi mengatur seberapa banyak kebisingan dapat dihasilkan oleh sumber-sumber kebisingan tertentu dan regulasi untuk penerima mengatur berapa banyak total kebisingan yang diperbolehkan untuk ada pada area tertentu.

Contoh regulasi emisi yang berlaku di Indonesia adalah:

  • Peraturan Menteri Lingkungan Hidup dan Kehutanan No. 56 Tahun 2019 (P.56/MENLHK/SETJEN/KUM.1/10/2019) tentang baku mutu kebisingan kendaraan bermotor tipe baru dan kendaraan bermotor yang sedang diproduksi kategori M, kategori N, dan kategori L
  • Peraturan Menteri Perhubungan Republik Indonesia Nomor PM 62 Tahun 2021 tentang peraturan keselamatan penerbangan sipil bagian 36 tentang standar kebisingan untuk sertifikasi tipe dan kelaikudaraan pesawat udara

Kedua peraturan menteri diatas meregulasi seberapa besar kebisingan boleh dihasilkan oleh kendaraan bermotor yang dikendarai di jalan dan juga pesawat udara yang beroperasi di wilayah Republik Indonesia.

Sedangkan untuk regulasi kebisingan yang mengatur tingkat kebisingan pada penerima diatur pada

  • Keputusan Menteri Negara Lingkungan Hidup No.48 Tahun 1996 tentang baku tingkat kebisingan

Pada peraturan tersebut, diatur mengenai batas kebisingan yang diperbolehkan pada penerima sesuai dengan fungsinya – misalkan pada pemukiman, baku tingkat kebisingannya adalah 55 dBA dan pada area industri 70 dBA. Selengkapnya pada tautan berikut: https://www.konsultasi-akustik.com/kebisingan-lingkungan/standar-kebisingan/

Selain itu, terdapat juga persyaratan lain, misalnya pada Peraturan Pemerintah (PP) No. 36 Tahun 2005 tentang peraturan pelaksanaan Undang-Undang nomor 28 tahun 2002 tentang bangunan gedung. Salah satu butir pada peraturan ini mensyaratkan sarana peredam kebisingan untuk jalan bebas hambatan di lingkungan permukiman atau pusat kota yang sudah terbangun.

Panduan Mengenai Kebisingan Lingkungan

Selain regulasi, terdapat beberapa panduan atau pedoman yang bersifat lebih teknis yang dikeluarkan oleh Kementerian Pekerjaan Umum sebagai berikut:

  • Pedoman Teknik Ditjen Bina Marga No. 36 Tahun 1999: Pedoman perencanaaan teknik bangunan peredam bising.
    Pada pedoman ini, diberikan kriteria pembagian daerah berdasarkan resiko kebisingannya menjadi daerah aman, moderat dan resiko. Selain itu, dijabarkan juga teknik pengukuran di sisi jalan dan juga jenis, bentuk dan bahan bangunan peredam bising
  • Pemodan Konstruksi dan Bangunan Pd T-10-2004-B: Prediksi kebisingan akibat lalu lintas.
    Pedoman yang diadopsi dari Calculation of Road Traffic Noise (CoRTN, 1998, UK) ini memberikan cara perhitungan kebisingan yang dihasilkan jalan berdasarkan jumlah kendaraan dan kecepatannya. Kemudian terdapat koreksi untuk persentase kendaraan berat, kecepatan, gradien dan jenis permukaan jalan. Dari perhitungan pada jalan tersebut, propagasi kebisingan pada penerima dapat dihitung dengan mempertimbangkan jarak, penghalang, pantulan dan sudut pandang.
  • Pedoman Konstruksi dan Bangunan Pd T-16-2005-B: Mitigasi dampak kebisingan akibat lalu lintas jalan.
    Pedoman ini menjabarkan cara untuk melakukan mitigasi terhadap dampak kebisingan yang dapat didasari oleh pengukuran (seperti yang dijabarkan pada Permen LH No 48 tahun 1996 dan panduan teknis No. 36 tahun 1999 diatas) dan juga berdasarkan prediksi (Pedoman teknis Pd T-10-2004-B).

Standar Mengenai Kebisingan Lingkungan

Selain regulasi dan pedoman diatas, terdapat Standar Nasional Indonesia (SNI) yang dikeluarkan oleh Badan Standardisasi Nasional (BSN) yang terkait dengan kebisingan lingkungan yaitu:

  • SNI 19-6878-2002 – Metode uji tingkat kebisingan jalan L10 dan Leq
    Standar ini menyajikan metode uji berupa tahapan pengujian serta cara perhitungan data kebisingan LA menjadi nilai L10 dan Leq.
  • SNI 8427:2017 – Pengukuran tingkat kebisingan lingkungan
    Standari ini memberikan cara pengukuran kebisingan lingkungan dengan konten yang mirip dengan KepMen LH No. 48 tahun 1996 yaitu dengan mengukur sampel kebisingan selama 10 menit pada waktu yang tersebar selama 24 jam. Kebisingan kemudian dapat dihitung berdasarkan waktunya yaitu Ls (kebisingan siang hari), Lm (kebisingan malam hari) dan Lsm (kebisingan rata-rata siang dan malam hari, dengan kebisingan malam hari mendapatkan penalti sebesar 5 dB).

Application of Noise Modelling & Mapping in Environmental Noise Mitigation

By | All, Articles, blog, Environmental Noise, Kebisingan, News, Uncategorized, Vibration | No Comments

Geonoise, didukung oleh AAVI, SoundPLAN dan KK Fisika Bangunan ITB menyelenggarakan Webinar dengan judul "Application of Noise Modelling & Mapping in Environmental Noise Mitigation"

Mari bergabung untuk mengikuti pemaparan dari para narasumber ahli. Segera daftarkan diri anda, gratis!

Webinar: Application of Noise Mapping & Environmental Noise Mitigation
🗓️ Rabu, 13 Oktober 2021
⏱️ 09.30-12.00
Platform: Zoom

Link Pendaftaran : https://bit.ly/GeonoiseWebinar

Pembicara:
1. Jochen Schaal (Managing director SoundPLAN GmbH)
2. Michel Rosmolen (Presiden Geonoise Asia Group)
3. Hizkia Natanael (Direktur Geonoise Indonesia)

Moderator : Iwan Prasetiyo S.T, M.T, Ph.D.- Dosen Teknik Fisika ITB

📞Info : 081364324389
support.id@geonoise.asia

Cara Mounting Akselerometer

By | All, Articles, News, Uncategorized | No Comments

Mounting (penempelan) akselerometer: pertimbangan dalam pemilihan

Salah satu tantangan yang dihadapi dalam melakukan pengukuran vibrasi menggunakan akselerometer adalah cara menempelkan akselerometer pada permukaan atau objek yang hendak diukur. Pemilihan teknik mounting yang tepat sangat berpengaruh baik pada hasil pengukuran maupun dari sudut pandang kemudahan menempelkan di lapangan.

Cara mounting akselerometer dapat mempengaruhi hasil pengukuran karena pengaruhnya terhadap frekuensi resonan akselerometer. Akselerometer memiliki faktor amplifikasi yang signifikan pada frekuensi resonan, sehingga dalam pengukuran menggunakan akselerometer, penting untuk memilih metoda mounting yang tidak menggeser frekuensi resonan sehingga masuk ke frekuensi yang ingin kita ukur.

Secara umum, terdapat empat teknik mounting akselerometer yang dapat dipilih yaitu:

  1. Stud mounting: teknik ini digunakan dengan cara menempelkan akselerometer menggunakan mur dan baut. Teknik ini adalah sering dianggap sebagai teknik mounting yang menghasilkan hasil pengukuran yang terbaik dibandingkan dengan opsi lainnya. Stud mounting menghasilkan frekuensi resonan yang tinggi sehingga cukup jauh dari frekuensi yang umumnya ingin kita ukur. Untuk meningkatkan performa dengan metoda ini, diperlukan apa yang biasa disebut dengan coupling fluid seperti oli, petroleum jelly atau beeswax.

Kekurangan dari stud mounting adalah, tidak semua objek memiliki lokasi yang memungkinkan untuk dibaut pada permukannya. Jika tidak ada, maka diperlukan modifikasi pada permukaan objek sehingga dapat meninggalkan bekas setelah pengukuran selesai dilakukan.

  1. Adhesive: terdapat beberapa adhesif yang dapat dipilih untuk menempelkan akselerometer seperti epoxy (biasanya dipilih untuk mounting permanen), wax, lem dan double sided tape. Penggunaan adhesif memiliki frekuensi resonan yang lebih rendah dari stud mounting, tetapi pada kebanyakan kasus masih cukup tinggi sehingga tidak mempengaruhi hasil pengukuran pada frekuensi yang ingin diukur. Tentunya pengaruh pada respon frekuensi ini tergantung pada jenis adhesif yang digunakan juga.

Kekurangan dari penggunaan adhesif, terutama untuk mounting sementara adalah sulitnya membersihkan adhesif setelah digunakan baik pada akselerometer ataupun permukaan objek yang ingin kita ukur.

Salah satu opsi lain terkait adhesif adalah dengan menggunakan adhesive mounting pad, yaitu dengan menempelkan sebuah pad pada permukaan objek menggunakan adhesif, kemudian akselerometer dimounting menggunakan sekrup pada pad tersebut. Hal ini memungkinkan kita untuk memindahkan satu akselerometer ke beberapa lokasi dengan lebih mudah. Pada aplikasinya, adhesive mounting pad memudahkan pengguna jika membutuhkan pengukuran berulang pada objek yang sama, dan juga menghindari kontak langsung antara akselerometer dan adhesif sehingga tidak perlu dibersihkan.

  1. Magnet: Untuk objek atau permukaan dengan bahan metal, salah satu opsi yang mudah dan tidak meninggalkan bekas adalah dengan menggunakan magnetic mounting base pada akselerometer sehingga akselerometer dapat menempel pada permukaan metal.

Kekurangannya, resonan frekuensi jika menggunakan magnet dapat turun sehingga dapat mempengaruhi hasil pengukuran jikalau frekuensi pengukuran yang ingin kita lakukan cukup tinggi (diatas 1 kHz). Untuk pengukuran jangka pendek dan tidak berulang, penggunaan magnet adalah salah satu opsi yang sering digunakan.

  1. Handheld: Pada beberapa kasus, permukaan yang hendak diukur tidak memungkinkan kita untuk menempelkan akselerometer dengan tiga opsi lainnya diatas, sehingga opsi yang tersisa adalah dengan memegang akselerometer pada permukaan. Pada kasus seperti ini, probe tip dapat digunakan sehingga kita dapat memberikan tekanan pada permukaan dengan lebih mudah dengan tangan.

Kekurangannya, rentang frekuensi yang dapat diukur menjadi jauh lebih sempit, umumnya dibawah sekitar 100 Hz. Karena tangan manusia juga tidak dapat diam dengan sempurna, maka frekuensi di bawah 10 Hz juga menjadi tidak akurat.