Category

Articles

Coronavirus Lockdown Gives Animals A Rare Break from Noise Pollution

By | Articles, blog, Environmental Noise, Kebisingan, News

The COVID-19 lockdown could become an unprecedented natural experiment in noise pollution. Some of the world’s most vocal animals — birds and whales — might already be benefiting from a quieter environment.

While a drop in transportation during the coronavirus lockdowns has led to lower pollution levels across the world, the slowdown in traffic has also lowered another big polluter: noise.

According to the World Health Organization (WHO), noise pollution affects over 100 million people across Europe and, in Western Europe alone, road traffic accounts for premature deaths equivalent to the loss of roughly “1.6 million healthy years of life.” 

Take the disturbance to human health out of the equation, and noise remains a big source of pollution for the other inhabitants of the planet as well, namely, animals. 

But how much have animals in countries on lockdown really benefited from the drop in noise levels? Turns out, that’s a very difficult question to answer.

Birds will benefit the most

Birds — by far the most visible animals found in cities, and the most vocal — stand to be among the biggest beneficiaries of quieter streets and parks. 

The signals birds send each other through song is a means of survival. Without the ability to sing, hear and be heard, birds would have a difficult time finding a mate or defending their territory from predators.  

There are reports of seeing more birds during the lockdown. Ornithologists say this is due to increased awareness of people’s surroundings while at home

Human activity influences bird behavior, even prompting them to communicate at less ‘busy’ times of day

The swift rise of human-made noise — also known as anthropogenic noise — over the past century has made this harder for birds. 

Just like humans who have to speak up in a loud setting, birds, too, have to sing louder to communicate properly in today’s noisy world, according to ornithologist Henrik Brumm, who heads the research group for the communication and social behavior of birds at the Max Planck Institute for Ornithology near Munich.

“This happens really fast,” Brumm told DW. “We found out that it takes roughly 300 milliseconds, so less than 1 second, for birds to readjust when the level of noise rises. So, when their surroundings become louder, they sing louder, too.”

Are birds getting quieter? Maybe.

Birds are already known to sing more quietly in the early morning hours of the weekends, says Brumm. The reason: there’s less traffic to compete with. 

With Europe on lockdown, Germany for its part, has seen passenger air travel slashed by over 90%. Moreover, car traffic has dropped by more than 50% and trains are running at less 25% their usual rates.

A recent study from the Max Planck Institute also suggests that chronic traffic noise can have a negative effect on embryo mortality and growth in zebra finches. This, in turn, could mean that the current lockdowns coinciding with mating season could lead to not only more, but also healthier hatchlings. That is, as long as their parents choose a spot that’s still safe from humans after the lockdown ends.

Though it’s difficult to speculate without real-time data, Brumm says, it stands to reason that the current period of quiet could mean birds might be singing more softly than usual, which would already be a huge benefit.

At land or sea, noise is bad news for animals

Birds aren’t the only animals that stand to benefit from less noise. According to a recent study published in the journal Biology Letters, noise pollution affects any number of creatures ranging from frogs, to shrimp, to fish, mammals, mussels and snakes.

In fact, another habitat garnering more and more attention for noise pollution is the ocean. As bioacoustics expert Christopher Clark described it in with Yale’s environmental magazine, the din from oil and gas activity, for example, is filling entire ocean basins with “one big storm of noise.”

While research on noise pollution and marine life, just like with ornithology, is in its early stages, a landmark study conducted in the days after 9/11 found that less shipping traffic seemed to make whales calmer.

Examining the feces of right whales — a species of baleen whale that can reach 15 meters in length and weigh up to 70 tons — researchers found that fewer ships in the waters along the US-Canadian coast correlated with lower stress hormones.

The noise levels from shipping traffic, whose 20–200 Hz hum disturbs sea life despite being a low frequency, decreased by 6 decibels, with a significant reduction below 150Hz .

An unprecedented time for researchers

Just like ornithologists, marine life researchers have also found correlations between noise and interruptions in behaviors like foraging and mating. Whales, like birds, also “mask.” That is to say, they sing louder to be heard over noise disturbances, be they high or low frequency sounds.

“It’s really a huge footprint that these activities have in the ocean,” according to Nathan Merchant, an expert on noise and bioacoustics at the UK’s Centre for Environment, Fisheries and Aquaculture Science (CEFAS).

Source: https://www.dw.com/

And the sources of noise pollution — ranging from shipping, to wind farms, to the sequence of powerful blasts from seismic air gun tests used to locate oil and gas deposits in the ocean deep — are even harder to escape in the ocean than on land.

“It has a lot to do with how sound travels under water. Sound can travel much further and much faster than in air,” Merchant told DW.

Instruments off the coast of North America, for example, can detect seismic air gun testing as far away as the Brazilian coast.

With many cruises suspended, oil freighter traffic impacted by an oil price crash and rig activity being run by skeleton crews to curb the spread of COVID-19, marine biologists could potentially find a treasure trove of data once they’re allowed to go back into the field. 

“We have underwater noise recorders at sea as we speak, but they aren’t cabled to land. So, we’ll find out when get out on a ship in several months’ time and get the data back,” Merchant said. 

The more interesting question by that point might be how marine life responds to a sudden reintroduction of the human cacophony after an unexpected period of rest.

Warna Suara Kebisingan

By | Articles, Kebisingan, News | No Comments

Bunyi/suara merupakan kumpulan sinyal acak yang memiliki karakteristik fisis tertentu yang bergantung pada sumber bunyi. Salah satu karakter fisis bunyi dapat dilihat dari spektrum yang terbentuk. Ada banyak kebisingan yang dapat dibedakan berdasarkan karakter spektrumnya, seperti White Noise, Pink Nopise, Brownian Noise, Blue Noise, Violet Noise, Grey Noise, dan lainnya. Pada umumnya yang sering digunakan adalah White Noise, Pink Noise, dan Brownian Noise baik dalam pengukuran ataupun pengetesan audio.

Banyak orang sangat familiar dengan White Noise, biasanya suara static dari Air Conditioner yang menghantarkan kita untuk terlelap dengan menyamarkan background noise selalu dianggap White Noise padahal secara teknis apa yang kita dengar dari putaran kipas Air Conditioner bukanlah White Noise. Banyak suara yang kita kaitkan dengan White Noise sebenarnya adalah Pink Noise, Brownian Noise, Green Noise, ataupun Blue Noise. Dalam dunia audio engineering ada berbagai macam jenis warna noise dengan keunikan spektrumnya tersendiri, hal ini diproduce untuk memberikan kesan kaya pada aransemen music, relaxasi, dan lain sebagainya. Jadi sudah mengerti ya bahwa suara static tidak selalu White Noise. Berikut beberapa warna suara yang cukup familiar dan sering dibahas dalam dunia audio engineering:

  1. White Noise

Warna bising yang paling sering disebut dalam kehidupan sehari-hari adalah White Noise. White Noise dinamai “White” atau putih sebagai pengibaratan cahaya putih yang mengandung semua frekuensi secara merata atau flat dalam kalkulasi matematis. Dikatakan matematis karena pada kenyataannya tidak flat sempurna. Pola hitung White Noise merata jika dihitung menggunakan persamaan berikut:

Jadi pada kasus White Noise, maka power sinyalnya menjadi:

Spektrum yang dihasilkan berupa garis lurus konstan seperti grafik berikut,

Perlu diingat bahwa grafik yang terlihat adalah fungsi logaritmik dan bukan fungsi linear dimana range frekuensi pada frekuensi-frekuensi tinggi semakin luas daripada range frekuensi pada frekuensi rendah. Berkut merupakan White Noise yang dapat didengarkan:

  1. Pink Noise

Secara proporsional spektrum pink noise terlihat menurun, namun jika direntangkan tanpa melihat band frekuensi akan bernilai merata atau flat pada setiap frekuensi. Dikarenakan pendengaran manusia memiliki space yang proporsional, dimana penggandaan frekuensi (1/1 oktaf) akan dirasakan sama terlepas dari frekuensi aktualnya (40-60 Hz terdengar sama secara interval dan jarak dengan 4000-6000 Hz), setiap oktaf mengandung jumlah energi yang sama dan karenanya Pink Noise sering digunakan sebagai sinyal referensi dalam audio engineering. Kerapatan spectral power dari Pink Noise dibandingkan dengan White Noise memiliki perbedaan 3 dB per-oktaf lebih rendah (Proporsional density hingga 1/f) sehingga karena alasan inilah Pink Noise seringkali disebut dengan Noise 1/f. Beberapa orang mengaitkan warna pink dengan merah dan putih dimana pink lebih cerah dari merah dan lebih redup dari putih sehingga dijabarkan sebagai spektrum menurun dengan nilai mendekati a ~ 1. Secara matematis, Pink Noise dapat dikalkulasikan menggunakan formulasi dibawah ini.

Penggambaran kurva yang dihasilkan oleh Pink Noise adalah sebagai berikut:

Secara audial, Pink Noise akan terdengar seperti rekaman audio berikut ini,

  1. Brownian Noise (Red Noise)

Warna kebisingan satu ini memiliki beberapa istilah, beberapa orang menyebutnya Brown Noise, Brownian Noise, ataupun Red Noise. Brownian ditemukan oleh Robert Brown, penemu Brownian Motion (Random Walk or Drunkard’s Walk) dimana Noise yang dihasilkan oleh Brownian Motion ini sama dengan Red Noise/Brown Noise. Diibaratkan sebagai cahaya merah yang lebih pekat dari Pink dan White, spektrum yang dibentuk memiliki ciri khas penurunan tajam yang melebihi penurunan Pink Noise (1/f2 atau penurunan 6 dB per-oktaf). Secara visual nilai Red Noise adalah sebagai batas Pink Noise bersamaan dengan White Noise, sehingga kurva spektrum yang terbentuk adalah sebagai berikut:

Secara audial, Brownian Noise akan terdengar seperti rekaman audio berikut ini,

  1. Blue Noise (Azure Noise)

Jika Red Noise atau Brownian Noise dan juga Pink Noise memiliki karakter menurun, maka Blue Noise adalah kebalikannya. Blue Noise memiliki ciri kurva spektrum menanjak yang berbanding terbalik dengan Pink Noise. Kerapatan proporsional Blue Noise dapat disederhanakan senilai dengan f (density proportional f) melebihi range dari finite frekuensi. Blue Noise memiliki noise dengan komponen frekuensi rendah yang minimal dan tidak ada lonjakan energi yang terkonsentrasi, atau dapat juga disebut sebagai suara untuk dithering yang baik. Dalam beberapa literasi dikatakan bahwa Radiasi Cherenkov adalah contoh alami dari Blue Noise yang hamper sempurna, dengan pertumbuhan kepadatan daya yang linear dengan fekuensi diatas area spektrum dimana permeabilitas indeks refraksi medium mendekati konstan. Spektrum densitas secara jelas dipaparkan dalam formulasi Frank-Tamm. Dalam hal ini, keterbatasan rentang frekuensi berasal dari keterbatasan kisaran dimana suatu bahan dapat memiliki indeks refraksi lebih besar dari satu. Radiasi Cherenkov juga muncul sevagai warna biru cerah untuk alasan ini.

Penggambaran kurva yang dihasilkan oleh Blue Noise adalah sebagai berikut:

Secara audial, Blue Noise akan terdengar seperti rekaman audio berikut ini,

  1. Violet Noise (Purple Noise)

Jika Blue Noise adalah kebalikan dari Pink Noise, maka Violet dapat dikategorikan sebagai kebalikan dari Red atau Brownian Noise. Hal ini dapat dilihat dari penambahan power density dari Violet Noise yang bernilai 6 dB peroktaf dengan meningkatnya niilai frekuensi. Kerapatan proporsional dari Violet Noise atau sering juga disebut Purple Noise adalah f2 pada rentang frekuensi tertentu. Violet Noise kadang juga dikatakan sebagai diferensiasi dari White Noise karena nilainya berkisar pada hasil diferensiasi nilai pada sinyal White Noise.

Penggambaran kurva yang dihasilkan oleh Violet Noise adalah sebagai berikut:

Secara audial, Violet Noise akan terdengar seperti rekaman audio berikut ini,

  1. Grey Noise

Grey Noise adalah White Noise yang diacak yang dikorelasikan dengan kurva kebisingan suara yang sama secara psychoacoustic atau dapat dikatakan juga sebagai kurva A-weighting terbalik, dengan rentang frekuesni tertentu yang memberikan kesan atau persepsi bahwa ini terdengar sama kerasnya pada semua frekuensi. Hal ini berbeda dengan White Noise pada umumnya yang memiliki nilai kekuatan yang sama pada skala frekuensi linear tetapi tidak dianggap sama kerasnya karena tidak disesuaikan dengan kurva kenyaringan suara pada manusia.

Penggambaran kurva yang dihasilkan oleh Grey Noise adalah sebagai berikut:

Secara audial, Grey Noise akan terdengar seperti rekaman audio berikut ini:

Written by:

Betabayu Santika

Acoustic Design Engineer

Geonoise Indonesia

Beta@geonoise.asia

Sources:

Pics: Noise Curves By Warrakkk – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19274696

Hartmann, William M. Signals, sound, and sensation. Springer Science & Business Media, 2004.

“Federal Standard 1037C”. Institute for Telecommunication Sciences. Institute for Telecommunication Sciences, National Telecommunications and Information Administration (ITS-NTIA). Retrieved 16 January 2018.

Lau, Daniel Leo; Arce, Gonzalo R.; Gallagher, Neal C. (1998), “Green-noise digital halftoning”, Proceedings of the IEEE, 86 (12): 2424–42, doi:10.1109/5.735449

Joseph S. Wisniewski (7 October 1996). “Colors of noise pseudo FAQ, version 1.3”. Newsgroup: comp.dsp. Archived from the original on 30 April 2011. Retrieved 1 March 2011.