Efek Tanaman dapat mengurangi kebisingan

By | All, Articles, Environmental Noise, Kebisingan, Uncategorized, Vibration | No Comments

Cara yang dibutuhkan sebagian besar pekerja untuk menyelesaikan tugas telah secara signifikan mengubah cara perusahaan menggunakan ruang mereka. Ruang yang tenang dibutuhkan untuk pekerjaan yang mendalam dan terfokus. Ruang rapat dan ruang kolaborasi yang didukung teknologi digunakan untuk rapat yang produktif. Idealnya, sebuah kantor dirancang sedemikian rupa sehingga memungkinkan anggota tim untuk melakukan pekerjaan terbaik mereka.

Sayangnya, mungkin sulit untuk memastikan desain mencakup semua aspek ini. Akibatnya, desainer dan arsitek masih sering harus meninggalkan ruang untuk bilik dan ruang kantor terbuka, faktor yang berkontribusi besar terhadap tingkat kebisingan secara umum.

 

Tahukah kamu? Menanam pohon di rumah atau kantor Anda tidak hanya membantu mendinginkan suhu internal, meningkatkan oksigen di udara memberikan rasa segar, dan membantu bersantai saja. Tapi tanaman juga bisa MEMBANTU MENYERAP KEBISINGAN!

Salah satu cara kreatif untuk memerangi kebisingan kantor dan membawa elemen biofilik ke dalam desain adalah dengan menggabungkan tanaman dan tanaman hijau ke dalam ruang. Penelitian telah menunjukkan bahwa tanaman dan dinding hijau hidup adalah cara yang efektif untuk menyerap polusi suara dan kebisingan.

Di luar kualitas penyerap suara, tanaman dan elemen biofilik dapat membantu meningkatkan kesejahteraan pekerja secara keseluruhan. Akses ke elemen alami seperti tanaman hijau, cahaya alami, dan tekstur organik telah terbukti meningkatkan produktivitas karyawan dan mengurangi ketidakhadiran. Tanaman telah ditemukan sebagai penguat suasana hati dan pereda stres bagi anggota tim, yang pada gilirannya dapat membantu meningkatkan laba majikan.

Apakah Tumbuhan Membantu Menyerap Suara?

Ada sedikit penelitian tentang masalah ini, tetapi jawaban singkatnya adalah ya. Sifat fleksibel dan keropos dari tanaman rumah dalam ruangan bertindak sebagai peredam suara alami. Ada tiga cara agar tanaman rumah dapat mengurangi suara di rumah atau kantor Anda: defleksi, penyerapan, dan pembiasan.

Kebanyakan orang tidak memahami manfaat penyerapan suara tanaman hias. Namun, mereka benar-benar membantu dengan penyerapan suara.

Bagaimana Tanaman Mengurangi Tingkat Kebisingan Dalam Ruangan?

Seperti disebutkan di atas, tanaman mengurangi tingkat kebisingan melalui tiga metode berbeda: defleksi, penyerapan, dan pembiasan.

  • Defleksi – Gelombang suara cenderung memantul di sekitar permukaan yang keras. Dari situlah semua suara tambahan itu berasal. Dinding kaku dan akan memperkuat suara, sementara tanaman fleksibel dan membantu mematikan suara dengan memecah gelombang suara menjadi bentuk energi lain.
  • Penyerapan – Tanaman sangat bagus dalam menyerap suara karena daun, cabang, dan kayu. Kayu adalah penyerap suara yang bagus. Pernahkah Anda berjalan melalui hutan dan kagum pada keheningan? Itu karena pepohonan menyerap semua kebisingan sekitar.
  • Pembiasan – Pembiasan menghilangkan gema suara yang memantul dari permukaan yang keras. Tanaman akan membantu untuk membiaskan kebisingan ini dan menghilangkan gema yang bertanggung jawab atas banyak kebisingan tambahan di rumah atau kantor Anda.

 

Tanaman dalam ruangan yang bekerja paling baik dalam menyerap suara seperti:

  • Pakis: memiliki banyak ruang permukaan untuk membantu mengurangi suara. Daunnya yang lebar menyebar dan menutupi area yang cukup luas.
  • Air Mata Bayi: Air Mata Bayi adalah tanaman lebat yang terlihat hampir seperti lumut. Tanaman ini memiliki cara menggantungkan dirinya di atas pot dan membuat peredam suara yang bagus saat diangkat dari tanah.
  • The Peace Lily: Peace Lily dapat menyerap beberapa suara dengan daunnya dan melakukan pekerjaan yang baik untuk memantulkan suara ke tanaman lain dan merupakan tanaman penyerap suara yang bagus yang dapat Anda letakkan di rumah Anda. Sifat penyerap kebisingan mereka yang sebenarnya ada di daunnya yang tebal dan lebar.
  • Tanaman Karet: Keindahan tanaman ini adalah seberapa besar ia bisa tumbuh. Tanaman karet menutupi area permukaan yang luas yang hanya berfungsi untuk meningkatkan sifat menyerap suara mereka.
  • Ara Daun Biola: Ara daun biola adalah tanaman lain dengan daun yang lebar dan tebal. Mereka bisa tumbuh tinggi, dan bentuk daun yang ditangkupkan menjadi penyerap suara yang efektif.

Reference :

พลังจากต้นไม้ ลดมลพิษทางเสียง

https://bettersoundproofing.com/best-sound-absorbing-indoor-plants/

https://www.workdesign.com/2020/03/the-top-sound-absorbing-plants-for-the-workplace/

LINGKUP KERJA KONSULTAN AKUSTIK ARSITEKTURAL

By | Uncategorized

Apa saja yang harus dikerjakan oleh perusahaan konsultasi akustik arsitektural? Pertanyaan tersebut sangat umum diajukan apabila seorang akustisi diminta untuk mengajukan proposal kerja untuk sebuah proyek. Pada artikel ini kami akan menjabarkan lingkup kerja konsultan akustik dengan referensi tipe proyek mixeduse highend building. Karena dalam tipe proyek tersebut konsultan akustik arsitektural dituntut untuk dapat menjabarkan semua lingkup kerjanya dalam satu proyek dengan kompleksitas yang tinggi.

Detail lingkup kerja konsultan akustik dalam proyek mixeduse highend building adalah sebagai berikut:

  1. Perumusan Kriteria

Di awal proyek, konsultan akustik harus merekomendasikan kriteria/target desain untuk bermacam-macam ruangan dan area di dalam bangunan seperti retail, unit apartemen baik untuk kamar tidur dan ruang keluarga, dan area komersil seperti meeting room, ruang multifungsi, spa, fitness, restaurant, club lounge, dll. Kriteria-kriteria tersebut ditetapkan berdasarkan studi dan rangkuman dari standar yang berlaku di negara tersebut, standar internasional, rekomendasi klien, dan operator gedung yang bersangkutan.

 

  1. Skematik

dengan banyaknya ruangan yang masuk ke dalam lingkup kerja konsultan akustik dengan tipe proyek seperti ini, sangat disarankan seorang akustisi memberikan desain skematik untuk beberapa ruangan penting untuk menjadi perhatian konsultan lainnya di tahap awal proyek. Contohnya adalah ruangan MEP, koneksi struktur bangunan, penempatan peralatan HVAC di atas ceiling, dan draft konfigurasi partisi dinding.

 

  1. Review Bising dari Lingkungan Sekitar Bangunan

Konsultan akustik harus melakukan review potensi sumber bising dari pesawat terbang, stasiun kereta, transportasi di jalan raya, peralatan MEP outdoor, dan semua hal di sekitar bangunan yang berpotensi mengganggu kenyamanan audial ke bagian dalam bangunan untuk memastikan kriteria akustik yang ditargetkan tercapai. Dalam tahap ini akustisi harus dapat menyampaikan hasil pemodelan dan simulasi untuk beberapa titik di sekitar bangunan dalam bentuk gambar yang dapat dimengerti klien dan konsultan lainnya. Pada tahap ini dapat direkomendasikan konfigurasi façade bangunan yang telah mempertimbangkan bising dari area sekitar bangunan.

 

  1. Bising HVAC (ductborne)

Pembahasan dan peninjauan bising dari seluruh HVAC baik itu dari air handling unit (AHU), axial dan centrifugal fans, fan coil unit (FCU), dll. Ducting system tersebut akan dianalisa untuk menentukan level bising di ruangan kritis dari outlet diffuser ducting system terdekat. Dari analisa tersebut keperluan akan silencer, lagging atau duct lining akan direkomendasikan demi tercapainya kriteria akustik yang telah ditentukan. Analisa tersebut akan dilakukan pada semua sistem HVAC tidak terkecuali, dengan atensi terbesar pada area tempat tinggal, spa, hotel, dll.

 

  1. Rambatan Suara Pada Struktur Bangunan (StructureBorne)

Semua hal yang berhubungan dengan rambatan atau getaran suara via struktur bangunan baik itu karena langkah kaki manusia di lantai atas atau getaran dari instalasi mesin-mesin MEP di atas ceiling ataupun lantai. Konsultan akustik harus mampu melakukan evaluasi sesuai frekuensi alami struktur bangunan dan memberikan rekomendasi terhadap elemen pelat lantai untuk memenuhi standar operator dan klien yang diaplikasikan.

 

  1. Kontrol Vibrasi Pada Mesin

Konsultan akustik harus melakukan pembahasan mendalam pada isolator vibrasi untuk mesin-mesin yang terpasang. Hal ini dilakukan dengan memperhatikan defleksi pelat lantai dan hubungannya dengan beban statis dan dinamis mesin tersebut (contoh: chiller, pompa, cooling tower, AHU, dll). Selain itu, memastikan isolator tersebut efisien untuk menahan getaran ke struktur bangunan.

 

  1. Isolasi Ruangan

Pembahasan tentang isolasi ruangan-ruangan tertentu dengan menyediakan perhitungan teknis baik itu dengan metode “ruangan dalam ruangan” dan “floating floor” agar suara dan getaran tidak merambat ke seluruh elemen bangunan terutama ruangan di sekitar area yang diisolasi.

 

  1. Interior Akustik

Peninjauan dan perhitungan parameter akustik ruangan pada elemen desain interior dari ruangan-ruangan komersil seperti ballroom, meeting room, dan area lainnya dimana kejelasan suara percakapan atau musik adalah hal yang krusial.

 

  1. Gambar Detail

Konsultan akustik harus menyediakan atau merekomendasikan spesifikasi elemen kulit bangunan seperti façade, dinding, dan pelat lantai dalam format CAD secara potongan atau denah. Hal ini akan memudahkan konsultan terkait mengaplikasikan spesifikasi tersebut di gambar konstruksi mereka.

 

  1. Isolasi Kebisingan Akibat Benturan

Benturan pada area fitness baik itu karena aktifitas aerobik atau angkat beban menjadi perhatian tersendiri dari konsultan akustik. Selain bentuk treatment akustik yang berbeda, rentang waktu aktivitas tersebut juga harus masuk dalam perhitungan teknis secara detail, dan tentunya terukur.

 

  1. Peninjauan Kembali Gambar Konsultan Terkait

Setelah seluruh treatment akustik diadaptasi ke gambar kontruksi oleh konsultan terkait, akustisi harus meninjau kembali seluruh gambar tersebut demi memastikan semua treatment sudah digambarkan dengan tepat, sebelum masuk ke fase lelang (tender).

 

  1. Koordinasi dengan Kontraktor Terpilih

Konsultan akustik harus mengalokasikan waktu untuk mengkoordinasikan desain dan menjawab pertanyaan-pertanyaan dari kontraktor terpilih serta menandatangani semua formulir yang berhubungan dengan persetujuan material apabila sudah sesuai dengan intensi akustisi tersebut.

 

  1. Penilaian akhir

Sebelum serah terima proyek ke pihak selanjutnya, konsultan akustik harus melakukan penilaian akhir dari elemen bangunan yang didesain oleh konsultan tersebut. Selanjutnya, membandingkan nilai ukur tersebut ke target desain dan kriteria yang sudah ditentukan sebelumnya.

Cara Mounting Akselerometer

By | All, Articles, News, Uncategorized | No Comments

Mounting (penempelan) akselerometer: pertimbangan dalam pemilihan

Salah satu tantangan yang dihadapi dalam melakukan pengukuran vibrasi menggunakan akselerometer adalah cara menempelkan akselerometer pada permukaan atau objek yang hendak diukur. Pemilihan teknik mounting yang tepat sangat berpengaruh baik pada hasil pengukuran maupun dari sudut pandang kemudahan menempelkan di lapangan.

Cara mounting akselerometer dapat mempengaruhi hasil pengukuran karena pengaruhnya terhadap frekuensi resonan akselerometer. Akselerometer memiliki faktor amplifikasi yang signifikan pada frekuensi resonan, sehingga dalam pengukuran menggunakan akselerometer, penting untuk memilih metoda mounting yang tidak menggeser frekuensi resonan sehingga masuk ke frekuensi yang ingin kita ukur.

Secara umum, terdapat empat teknik mounting akselerometer yang dapat dipilih yaitu:

  1. Stud mounting: teknik ini digunakan dengan cara menempelkan akselerometer menggunakan mur dan baut. Teknik ini adalah sering dianggap sebagai teknik mounting yang menghasilkan hasil pengukuran yang terbaik dibandingkan dengan opsi lainnya. Stud mounting menghasilkan frekuensi resonan yang tinggi sehingga cukup jauh dari frekuensi yang umumnya ingin kita ukur. Untuk meningkatkan performa dengan metoda ini, diperlukan apa yang biasa disebut dengan coupling fluid seperti oli, petroleum jelly atau beeswax.

Kekurangan dari stud mounting adalah, tidak semua objek memiliki lokasi yang memungkinkan untuk dibaut pada permukannya. Jika tidak ada, maka diperlukan modifikasi pada permukaan objek sehingga dapat meninggalkan bekas setelah pengukuran selesai dilakukan.

  1. Adhesive: terdapat beberapa adhesif yang dapat dipilih untuk menempelkan akselerometer seperti epoxy (biasanya dipilih untuk mounting permanen), wax, lem dan double sided tape. Penggunaan adhesif memiliki frekuensi resonan yang lebih rendah dari stud mounting, tetapi pada kebanyakan kasus masih cukup tinggi sehingga tidak mempengaruhi hasil pengukuran pada frekuensi yang ingin diukur. Tentunya pengaruh pada respon frekuensi ini tergantung pada jenis adhesif yang digunakan juga.

Kekurangan dari penggunaan adhesif, terutama untuk mounting sementara adalah sulitnya membersihkan adhesif setelah digunakan baik pada akselerometer ataupun permukaan objek yang ingin kita ukur.

Salah satu opsi lain terkait adhesif adalah dengan menggunakan adhesive mounting pad, yaitu dengan menempelkan sebuah pad pada permukaan objek menggunakan adhesif, kemudian akselerometer dimounting menggunakan sekrup pada pad tersebut. Hal ini memungkinkan kita untuk memindahkan satu akselerometer ke beberapa lokasi dengan lebih mudah. Pada aplikasinya, adhesive mounting pad memudahkan pengguna jika membutuhkan pengukuran berulang pada objek yang sama, dan juga menghindari kontak langsung antara akselerometer dan adhesif sehingga tidak perlu dibersihkan.

  1. Magnet: Untuk objek atau permukaan dengan bahan metal, salah satu opsi yang mudah dan tidak meninggalkan bekas adalah dengan menggunakan magnetic mounting base pada akselerometer sehingga akselerometer dapat menempel pada permukaan metal.

Kekurangannya, resonan frekuensi jika menggunakan magnet dapat turun sehingga dapat mempengaruhi hasil pengukuran jikalau frekuensi pengukuran yang ingin kita lakukan cukup tinggi (diatas 1 kHz). Untuk pengukuran jangka pendek dan tidak berulang, penggunaan magnet adalah salah satu opsi yang sering digunakan.

  1. Handheld: Pada beberapa kasus, permukaan yang hendak diukur tidak memungkinkan kita untuk menempelkan akselerometer dengan tiga opsi lainnya diatas, sehingga opsi yang tersisa adalah dengan memegang akselerometer pada permukaan. Pada kasus seperti ini, probe tip dapat digunakan sehingga kita dapat memberikan tekanan pada permukaan dengan lebih mudah dengan tangan.

Kekurangannya, rentang frekuensi yang dapat diukur menjadi jauh lebih sempit, umumnya dibawah sekitar 100 Hz. Karena tangan manusia juga tidak dapat diam dengan sempurna, maka frekuensi di bawah 10 Hz juga menjadi tidak akurat.

Penanganan Kebisingan Industri

By | All, Articles, Uncategorized, Vibration

Di tempat-tempat industri yang biasanya penuh dengan mesin atau sistem mekanis, kebisingan sudah pasti tidak bisa dihindari, bahkan sangat keras. Hal ini terkadang berbahaya bagi pekerja sehingga menyebabkan bahaya kesehatan dan keselamatan kerja. Oleh karena itu, pada artikel ini, kita akan membahas langkah-langkah pengendalian kebisingan yang dapat digunakan untuk mengatasi kebisingan industri di tempat kerja.

Sumber kebisingan

Mari kita mulai dengan rekap tentang bagaimana kebisingan dihasilkan:

Suara secara umum dihasilkan oleh getaran, atau terkadang karena sistem aerodinamis. Suara yang disebabkan getaran dapat disebabkan oleh berbagai alasan, misalnya:

  • Guncangan dan gesekan mekanis antara bagian-bagian mesin seperti palu, roda gigi berputar, bantalan, alat pemotong, dll.
  • Memindahkan bagian yang tidak seimbang
  • Getaran struktur besar dan berat

Sedangkan untuk kebisingan aerodinamis, disebabkan oleh aliran udara atau fluida melalui pipa, kipas angin, atau penurunan tekanan dalam sistem distribusi udara juga. Contoh tipikal sumber kebisingan aerodinamis adalah:

  • Uap dilepaskan melalui katup buang
  • Penggemar
  • Motor pembakaran
  • Pesawat jet
  • Aliran fluida turbulen melalui pipa

Langkah-langkah untuk mengontrol kebisingan di tempat kerja

Untuk mengontrol kebisingan di tempat kerja dengan benar, langkah-langkah berikut harus dilakukan:

  1. Identifikasi sumber suara (yaitu, sumber getar atau aliran aerodinamis)
  2. Identifikasi jalur kebisingan dari sumber ke pekerja
  3. Tentukan tingkat suara setiap sumber
  4. Tentukan kontribusi relatif terhadap kebisingan berlebihan dari setiap sumber dan lanjutkan untuk memberi peringkat sumber yang sesuai. Sumber dominan harus selalu diprioritaskan dan dikendalikan terlebih dahulu untuk mendapatkan redaman kebisingan yang signifikan.
  5. Pahami batas paparan yang dapat diterima seperti yang tertulis dalam undang-undang kesehatan dan keselamatan dan temukan pengurangan suara yang diperlukan.
  6. Cari tahu solusi sambil mempertimbangkan tingkat redaman suara, pengoperasian, pengendalian produktivitas, dan biaya.

Untuk mengurangi paparan kebisingan

Secara umum, paparan kebisingan dapat dikurangi dengan menghilangkan sumber kebisingan jika memungkinkan, jika tidak mengganti sumber dengan yang lebih tenang atau penerapan modifikasi teknik juga.

Cara paling efektif untuk meminimalkan paparan kebisingan adalah merancangnya sejak awal: tahap desain. Disarankan untuk selalu memilih fitur peralatan yang dapat mengurangi tingkat kebisingan ke tingkat yang dapat diterima. Untuk instalasi baru, sekali lagi pilih peralatan yang tidak berisik, dan pastikan untuk memiliki kebijakan pengadaan yang memilih untuk menggunakan peralatan yang tidak berisik, dan akhirnya menghilangkan kekurangan desain yang dapat menyebabkan penguatan kebisingan.

Modifikasi teknik mengacu pada perubahan yang dapat mempengaruhi sumber, atau jalur suara. Ini biasanya merupakan solusi yang lebih disukai untuk pengendalian kebisingan di tempat kerja yang sudah ada (tempat tanpa tindakan perlindungan kebisingan selama tahap desain). Ini karena modifikasi teknik dikenal lebih hemat biaya, terutama untuk mengendalikan kebisingan di sumbernya daripada di sepanjang jalur.

Pengendalian administratif dan penggunaan alat pelindung diri (APD) juga efektif sebagai tindakan pengendalian kebisingan yang dapat diterapkan pada pekerja itu sendiri. Kombinasi keduanya dapat dipertimbangkan ketika paparan kebisingan tidak membenarkan penerapan solusi teknik yang lebih mahal. Namun, penting untuk selalu diperhatikan bahwa kontrol administratif dan APD mungkin tidak seefektif menerapkan kontrol kebisingan teknis selama tahap awal atau modifikasi jalur suara. Oleh karena itu, mereka harus dikategorikan sebagai pilihan terakhir.

Solusi teknik untuk mengurangi kebisingan

Solusi yang berbeda dapat diterapkan untuk kebisingan yang disebabkan oleh getaran dan kebisingan aerodinamis.

Untuk kebisingan yang disebabkan oleh getaran, poin utamanya adalah mengurangi jumlah getaran pada sumbernya. Solusi tipikal termasuk modifikasi sumber energi seperti menurunkan kecepatan putar kipas, atau mengurangi gaya tumbukan alat pemukul, dll. Menambahkan bahan peredam ke permukaan yang bergetar karena gaya mekanis dapat membantu mengurangi efek getaran juga, terutama untuk struktur yang tipis . Untuk mencegah kerusakan yang tidak diinginkan karena gesekan atau benturan, bahan peredam dapat terjepit di antara permukaan peralatan dan bahan lain yang tahan terhadap abrasi. Perawatan ini disebut perawatan lapisan kendala.

Metode lain untuk mengurangi kebisingan yang disebabkan getaran termasuk meminimalkan celah pada pelindung mesin dan menutupinya dengan bahan penyerap akustik, mengganti bagian logam dengan bagian plastik jika memungkinkan, dan mengganti motor dengan yang lebih tenang.

Di sisi lain, untuk menangani kebisingan yang disebabkan aerodinamis, spesialis merekomendasikan untuk menerapkan praktik teknik yang mampu mengurangi kebisingan yang terkait dengan aliran fluida yang tidak stabil, misalnya meminimalkan kecepatan fluida, meningkatkan diameter pipa atau meminimalkan turbulensi dengan memanfaatkan kipas berkecepatan besar dan rendah dengan pisau melengkung.

Selain yang disebutkan di atas, ada juga langkah-langkah pengendalian kebisingan pasif yang dapat digunakan. Ini termasuk menggunakan penutup dan isolasi dengan menyimpan peralatan berisik di ruang / ruangan tertutup yang memiliki fitur akustik khusus seperti isolasi, kisi-kisi, atau penyegelan. Pemasangan penghalang akustik (panel penyerap suara) di tempat kerja, atau peredam suara di dalam saluran dan knalpot juga bekerja dengan baik dalam meredam kebisingan yang tidak diinginkan.

Langkah-langkah umum yang perlu diingat

Terakhir, berikut adalah beberapa metode umum yang dapat dilakukan seseorang untuk memastikan bahwa kebisingan di tempat kerja terkendali.

Perawatan rutin harus selalu dilakukan, di mana fokusnya harus pada mengidentifikasi dan mengganti bagian yang aus atau longgar, melumasi setiap bagian yang bergerak, dan memastikan bahwa peralatan yang berputar tidak kehilangan keseimbangan untuk menghindari kebisingan yang disebabkan oleh getaran.

Proses bising harus diperhatikan dan diganti dengan yang lebih tenang. Gema suara di dalam ruangan harus dikurangi. Gema adalah saat suara yang dihasilkan di dalam penutup mengenai permukaan reflektif dan dipantulkan kembali ke ruangan selain jalur kebisingan asli. Dalam beberapa kasus, suara yang bergema dapat mendominasi suara aslinya. Metode yang baik untuk membantu dalam kondisi seperti itu adalah dengan menambahkan bantalan pada permukaan reflektif dengan bahan penyerap suara sehingga tingkat kebisingan dapat dikurangi. Cara lain adalah mengatur peralatan di dalam ruangan agar tidak terlalu dekat dengan terlalu banyak struktur reflektif.

Kesimpulan

Sebagai kesimpulan, selalu lakukan tindakan untuk mengidentifikasi sumber suara di tempat kerja industri dan temukan cara yang sesuai untuk menyelesaikan masalah kebisingan untuk mencapai batas kebisingan sesuai dengan batas paparan yang ditetapkan dalam undang-undang kesehatan dan keselamatan yang diterbitkan oleh otoritas lokal. Sangat penting untuk mematuhi batas paparan kebisingan untuk memastikan kesehatan pendengaran para pekerja di tempat kerja.

Referensi

https://www.ccohs.ca/oshanswers/phys_agents/noise_control.html

https://www.who.int/occupational_health/publications/noise10.pdf

Structure Borne Noise: The Correlation Between Mass, Stiffness and Damping In Vibration Transmission.

By | All, Articles, Environmental Noise, Kebisingan, News, Uncategorized, Vibration | No Comments

Pada pembahasan sebelumnya, kita telah membahas bagaimana suara ari merambat ke struktur hingga menimbulkan kebisingan ke ruang penerima dan bagaimana tahapan untuk mengurangi kebisingan tersebut. Terdapat 3 cara yang dapat dilakukan untuk mengurangi kebisingan ke area penerima, yaitu penanganan pada bagian sumber, pada jalur transmisi dan terakhir pada ruang penerima. Umumnya, pada kondisi eksisting, penanganan dilakukan pada jalur transmisi dimana kita akan mengubah konfigurasi dari bangunan atau elemen yang dilalui oleh getaran yang merambat dari sumber. Penanganan pada jalur transmisi biasanya dilakukan dengan meminimalkan transmisi getaran dengan menambahkan springs atau inertia block. Salah satu desain spesial yang bisa dilakukan adalah dengan menggunakan spring dan juga inertia block seperti yang diperlihatkan pada gambar di bawah ini

Pemasangan isolator dan inertia block ini harus diperhitungkan dengan tepat untuk memastikan noise tereduksi dengan maksimal. Sebelum membahas perhitungan untuk memperoleh nilai dari parameter isolator dan inertia block mari kita bahas free block diagram pada Gambar 2 di bawah ini. Gambar ini menunjukkan sebuah sistem dengan free undamped vibration. Permasalahan dasar dari sebuah getaran umumnya berada massa dan stiffness.

Jika sebuah massa (m) diberikan gaya (F) maka akan ada resisting force atau gaya yang menahan dari arah berlawanan dengan perpindahan tertentu. Gaya ini disebut dengan stiffness ( ). Stiffness adalah sejauh mana suatu benda dapat menahan deformasi sebagai respons terhadap gaya yang diberikan ( ). X adalah besarnya perpindahan yang terjadi dari respon gaya yang diberikan. Gaya resisting ini menimbulkan sejumlah getaran pada massa yang memiliki percepatan ( ) atau perpindahan. Hal ini dapat dituliskan dalam bentuk persamaan

Solusi dari persamaan diferensial parsial ini adalah

Karena gerakan getaran dari sistem ini bergerak secara sinusoidal atau gerakan harmonik sederhana, suku akar dalam eksponen didefinisikan sebagai circular natural frequency.  Suku akar pada eksponen adalah circular natural frequency

Frekuensi alami dari mesin adalah

Jika frekuensi operasi dengan frekuensi natural diplot pada sebuah grafik maka akan terlihat seperti gambar di bawah ini

Ketika frekuensi operasi sama dengan natural frekuensinya maka akan terjadi resonansi. Pada keadaan ini amplitudonya akan tinggi dan menyebabkan getaran dan perambatan suara yang lebih tinggi pula. Kondisi resonan ini adalah keadaan dimana transmisi suara pada struktur sangat tinggi dan hal ini adalah hal yang paling tidak diinginkan. Untuk menghindari hal ini seperti yang diperlihatkan pada gambar di bawah ini maka target kita adalah membuat kombinasi frekuensi dan frekuensi operasi berada pada area yang berwarna merah. Solusi yang dapat dilakukan adalah bisa dengan menambahkan massa atau mengurangi stiffness-nya.

Selanjutnya kita akan membahas hubungan antara massa, stiffness dan damping pada transmisi getaran. Gambar di bawah ini adalah sebuah system yang bergetar dengan natural frekuensinya. Akan tetapi, sistem ini memiliki damping dashpot yang memiliki layer yang berperan sebagai isolator getaran dan juga mengabsorbsi energi mekanik.

Mari kita bahas free body diagram dari system di atas

F adalah external force atau gaya yang diberikan dalam mengoperasikan suatu mesin atau sistem. Gaya ini akan memberikan gaya yang berlawanan atau gaya yang resistable dari sistem stiffness. Gaya resistable ini dilambangkan dengan  dan gaya lainnya yang menahan (damper) yang dinotasikan dengan , yaitu kecepatan dari gerakan tertentu. Dengan gaya ini maka massa akan mengalami percepatan yang dinotasikan dengan .

Persamaan Free Damped Vibration (SDOF)

Solusi dari persamaan diferensial parsial di atas adalah:

dimana,

Nilai critical damping didefinisikan sedemikian rupa sehingga suku di dalam akar sama dengan 0

Critical damping adalah seberapa besar damping yang bisa dihasilkan, dimana jumlah redaman yang mungkin diperlukan mesin tertentu. Akan tetapi, kita dapat memberikan nilai redaman yang lebih atau di bawah nilai redamannya. Redaman yang diberikan dapat berupa spring atau flexible padding. Rasio antara actual damping (redaman yang akan ditambahkan) dengan critical damping disebut denggan damping factor.

ccri            : parameter yang bergantung dari suatu massa dan sistem stiffness yang bergetar

c          : redaman yang diberikan pada sebuah sistem

Di antara 3 jenis damping factor di atas, manakah yang lebih baik digunakan?

Coba kita lihat pada system di atas dimana terdapat impressed Force ( ) karena operasi mesin dan Transmitted Force ( ) dan karna terdapat mekanisme pada mesin maka ada gaya yang ditransmisikan. Perbandingan antara Fo dengan FT disebut transmissibility Ratio.

Nilai TR harus minimum dengan membuat nilai FT yang minimum juga agar transmisi dari getaran mesin tersebut juga minimum dan propagasi suaranya juga akan minimum. Jadi faktor apa saja yang mempengaruhi TR?

Faktor pertama adalah frekuensi natural dari mesin (  seperti yang dijelaskan sebelumnya system tertentu memiliki frekuensi alaminya berdasarkan massa dan stiffnes. Faktor kedua adalah frekuensi operasi pada mesin ( . Frekuensi operasi mungkin tidak selalu tetap karena kemungkinan ada fluktuasi dari tegangannya, terdapat masalah mekanis atau masalah pada gir sehingga frekuensi operasi mungkin berubah. Faktor terakhir adalah damping factor (ξ) di mana 3 jenis damping factor yang disebutkan di atas akan mengubah Transmitted force (FT). Berdasarkan 3 faktor utama yang dijelaskan tersebut makan persamaan dari Transmissibilitu Ratio adalah sebagai berikut

Dimana

Dimana R adalah rasio frekuensi maka persamaannya dapat disederhanakan sebagai berikut

Jika kita masukkan nilai damping ratio dan frequency ratio maka nilai TR-nya ditunjukkan pada tabel di bawah ini dan diplot pada grafik Gambar 5

Dengan perhitungan di atas kita dapat menentukan beberapa jenis peredam di mesin tertentu di bawah mesin untuk mengurangi perambatan suaranya. Akan tetapi, ada hal yang perlu diperhatikan berdasarkan grafik di bawah ini. Penggunaan damper dibagi ke dalam 3 zona berdasarkan frequency Ratio (R). Zona pertama adalah zona yang berwarna biru, di mana 0<R<0.5. Pada bagian ini perbedaan jika diberikan damper atau tidak semuanya akan naik dari 1 secara bertahap, dalam hal ini perbedaannya tidak terlalu significant. Dalam hal ini damper dapat diberikan namun akan memakan biaya yang cukup besar dan perubahannya pun hanya sedikit. Zona kedua adalah zona yang berwarna hijau, di mana 0.5<R<1,414. Dapat dilihat apabila tidak diberikan damper maka TR akan meningkat sangat tinggi hingga tak terhingga. Pada zona ini damper sangat perlu untuk digunakan agar getaran dan suara tidak berpropagasi. Terakhir adalah pada zona berwarna merah, dimana R>1,414. Perlu diperhatikan pada zona ini, apabila diberikan full damping ketika rasio frekuensinya besar maka TR akan semakin mengecil dan perbedaannya antara ketiga jenis damping factor tidak terlalu signifikan. Dengan demikian pada zona ini pemberikan damper sebaiknya tidak dilakukan.

By : Adetia | Geonoise Indonesia

Absorpsi Suara

By | Uncategorized, Vibration

Apa itu Absorpsi?

Penyerapan mengacu pada proses di mana material, struktur, atau objek mengambil energi saat gelombang ditemui, sebagai lawan untuk memantulkan energi. Sebagian dari energi yang diserap diubah menjadi panas dan sebagian lagi ditransmisikan melalui tubuh penyerap. Energi yang diubah menjadi panas dikatakan telah ‘hilang’. (mis. pegas, peredam, dll.)

 

Apa itu Penyerapan Suara?

Ketika gelombang suara mencapai permukaan material: sebagian darinya memantul; sebagian dari mereka menembus, dan sisanya diserap oleh materi itu sendiri.

Formula untuk Penyerapan Suara: –

Perbandingan energi bunyi yang diserap (E) dengan energi bunyi yang datang (Eo) disebut koefisien serapan bunyi (α). Rasio ini adalah indikator utama yang digunakan untuk mengevaluasi properti penyerap suara dari material. Formula dapat digunakan untuk mendemonstrasikan ini.

α (koefisien absorpsi) = E (energi suara yang diserap) / Eo (Energi suara insiden)

Dalam rumus ini: α adalah koefisien absorpsi suara;

  E adalah energi suara yang diserap (termasuk bagian perembesan);

  Eo adalah energi suara insiden.

Umumnya, koefisien serap suara dari bahan-bahan tersebut adalah antara 0 sampai 1. Semakin besar angkanya, semakin baik sifat penyerap suara. Koefisien penyerapan suara dari penyerap tersuspensi mungkin lebih dari satu karena area penyerap suara efektifnya lebih besar dari area yang dihitung.

Contoh: Jika dinding menyerap 63% energi datang dan 37% energi dipantulkan maka koefisien penyerapan dinding adalah 0,63.

Bagaimana kita bisa mengukur Koefisien Absorpsi?

Koefisien absorpsi dan impedansi ditentukan dengan dua metode berbeda sesuai dengan jenis medan gelombang datang.

  1. Tabung Kundt (ISO 10534-2)
  2. Ruang gema (ISO 354)

Metode Pengukuran Tabung Kundt: (ISO 10543-2)

Untuk pengukuran spesimen kecil menggunakan Kundt’s tube atau Impedance tube disebut juga Standing wave tube. Hasil dari pengukuran faktor absorpsi dan impedansi akustik, dengan menggunakan metode gelombang berdiri, jelas hanya bermakna jika diasumsikan tidak tergantung pada ukuran benda uji, yang biasanya cukup kecil. Faktor penyerapan untuk kejadian normal ditentukan dengan mengukur amplitudo tekanan maksimum dan minimum dalam gelombang berdiri yang diatur dalam tabung oleh pengeras suara.

Teknik dasar ini, yang disebutkan dalam pendahuluan, dianggap agak ketinggalan jaman dibandingkan dengan metode yang lebih modern berdasarkan transfer yang diimplementasikan relatif terlambat (1993) dalam standar internasional, ISO 10534-1, setelah digunakan setidaknya selama 50 tahun. Peralatan komersial juga telah tersedia selama beberapa dekade. Namun, terdapat bagian kedua dari standar yang disebutkan, ISO 10534-2, berdasarkan penggunaan sinyal broadband dan pengukuran fungsi transfer tekanan antara berbagai posisi dalam tabung. ISO 10543-2, yang menyiratkan metode dua mikrofon yang ditentukan diperluas ke bidang gelombang bola.

Biasanya tabung Impedansi Placid digunakan untuk koefisien absorpsi dan pengukuran kehilangan transmisi.

(https://www.placidinstruments.com/product/impedance-tube/

Klik disini untuk referensi Placid Sound absorption measurement  

Klik disini untuk referensi Placid Sound transmission loss measurement

Ruang Gema: (ISO 354)

Metode Ruang Gema merupakan metode tradisional, pengukuran faktor absorpsi benda uji yang lebih besar dilakukan di ruang pantul. Seseorang kemudian menentukan nilai rata-rata dari semua sudut kejadian dalam kondisi medan yang tersebar. Data produk yang biasanya dipasok oleh produsen peredam ditentukan sesuai standar internasional ISO 354, yang dipersyaratkan untuk pengukuran adalah 10-12 meter persegi dan ada persyaratan untuk bentuk areanya. Alasan dari persyaratan ini adalah bahwa faktor absorpsi yang ditentukan metode ini selalu memasukkan jumlah tambahan karena efek tepi, yang merupakan fenomena difraksi di sepanjang tepi benda uji. Efek ini membuat spesimen secara akustik lebih besar dari area geometris, yang dapat menghasilkan faktor absorpsi yang lebih besar dari 1.0. Tentu saja, ini tidak berarti bahwa energi yang diserap lebih besar daripada energi insiden.


Koefisien penyerapan suara dari bahan yang berbeda:
Penyerapan suara pada material tidak hanya terkait dengan sifat-sifat lainnya, ketebalannya, dan kondisi permukaan (lapisan dan ketebalan udara), tetapi juga terkait dengan sudut datang dan frekuensi gelombang suara. Koefisien penyerapan suara akan berubah sesuai dengan frekuensi tinggi, menengah, dan rendah. Untuk mencerminkan properti penyerap suara dari satu bahan secara komprehensif, enam frekuensi (125Hz, 250Hz, 500Hz, 1000Hz, 2000Hz, 4000Hz) diatur untuk menunjukkan perubahan koefisien penyerapan suara. Jika rasio rata-rata dari keenam frekuensi tersebut lebih dari 0,2, maka material tersebut dapat diklasifikasikan sebagai material penyerap suara.

Penerapan Sound Absorber:                                                                                                                                                                                                            Material ini dapat digunakan sebagai insulasi suara pada dinding, lantai, dan langit-langit gedung konser, bioskop, auditorium, dan studio penyiaran. Dengan menggunakan bahan penyerap suara dengan benar, transmisi gelombang suara dalam ruangan dapat ditingkatkan untuk menciptakan efek suara yang lebih baik.

Pilih penyerap suara Anda dari

Home

Oleh: Sudharsan | Geonoise India

Treatment Akustik di Sekolah

By | Articles, blog, Environmental Noise, News, Uncategorized, Vibration | No Comments

By Nichada Klombunchong

Beberapa generasi siswa dan guru telah mengalami masalah yang disebabkan oleh kebisingan dan desain akustik yang buruk dalam lingkungan pendidikan. Meskipun masalah telah dikenali selama lebih dari 100 tahun, akustik di ruang kelas tetap kurang diperhatikan di gedung-gedung lama, bahkan banyak sekolah-sekolah baru. Sebuah studi yang dirilis tahun 2012 ““Essex Study-Optimal classroom acoustics for all” mendefinisikan kebutuhan dan manfaat dari ruang kelas yang mempertimbangkan kualitas akustik. Studi tersebut mengamati dampak pengurangan waktu dengung (RT) di lingkungan ruang kelas. Kesimpulan yang diambil setelah dilakukan pengukuran akustik dan juga survei adalah adanya manfaat yang jelas jika kualitas akustik di ruang belajar ditingkatkan. Sederhananya, waktu dengung yang berlebih di ruang kelas memiliki efek negatif pada kesehatan dan performa, baik untuk siswa maupun guru.

Gaung disebabkan pantulan suara dari permukaan keras ke permukaan keras lainnya yang menyebabkan suara terdengar menumpuk sehingga dipersepsikan sebagai suara yang membingungkan dan sulit dipahami. Permukaan keras seperti jendela, papan tulis, balok beton, dan dinding gipsum yang ditemukan di sebagian besar ruang kelas tidak menyerap energi suara dan akibatnya, suara tersebut dipantulkan kembali ke dalam ruangan, sampai ke telinga berkali-kali dalam interval yang berjarak hanya dalam orde milidetik. Hal ini menyebabkan suara yang terdengar bergaung sehingga otak manusia mengalami kesulitan membedakan informasi primer dan membedakannya dari gaung. Masalah ini diperburuk ketika alat bantu dengar dan implan koklea digunakan. Gema berlebih juga memengaruhi siswa dengan masalah pemrosesan pendengaran, ADHD, dan tantangan belajar lainnya. Faktanya, semua siswa mendapat manfaat dengan menurunkan gaung dan meningkatkan kejelasan.

Dengung diukur dalam hubungannya dengan waktu. Waktu dengung (RT60) adalah waktu yang dibutuhkan suara untuk meluruh hingga 60dB di ruang tertentu. Semakin besar waktu dengung, semakin banyak gaung di sebuah ruangan, dan semakin sulit seseorang untuk mendengarkan informasi verbal. Waktu dengung suatu ruangan akan bergantung pada variabel seperti volume ruang kelas dan material yang digunakan di dalam ruang kelas, apakah merefleksikan atau menyerap suara.

Pengaruhnya terhadap Siswa dan Guru

Kebanyakan kegiatan belajar terjadi melalui komunikasi verbal. Secara tradisional, ruang kelas belum dirancang dengan memperhatikan bagaimana ruangan bersuara atau bagaimana hal itu dapat memengaruhi siswa dan guru yang menggunakannya. Diketahui bahwa jika siswa berada dekat dengan guru, siswa cenderung memiliki keterlibatan dan pemahaman materi yang lebih baik. Karena sebagian besar kelas memiliki 30 siswa atau lebih, sulit untuk membuat setiap siswa berada dekat dengan guru. Untuk siswa di bagian belakang kelas, tingkat suara yang mencapai siswa akan berkurang sebanyak 20dB dibandingkan sumbernya. Otak kemudian harus membedakan apakah suara yang diterima adalah sumber yang ingin didengar atau suara yang memantul dari dinding. Ketika salah satu faktor dalam gema alami di dalam ruangan, keterlambatan suara mencapai telinga, bersama dengan gangguan seperti kebisingan HVAC, suara tingkat dasar kelas dan kebisingan yang berasal dari luar pintu dan jendela, tidaklah mengherankan untuk menemukan bahwa banyak siswa yang tidak mendengarkan materi yang diajarkan kepada mereka.

Dan ini baru permulaan. Saat tingkat suara sekitar di kelas meningkat, guru secara alami meningkatkan tingkat suaranya. ‘Obrolan di kelas’ secara alami meningkat untuk mengimbangi dan masalah memperburuk ke titik di mana guru dan siswa mulai kehilangan konsentrasi.

Anak-anak Tidak Mendengar layaknya Orang Dewasa

Saat Anda mempertimbangkan masalah akustik yang dijelaskan, penelitian menunjukkan bahwa sebanyak 30% siswa mungkin benar-benar kesulitan dalam memahami pesan guru mereka. Kejelasan yang buruk karena jaraknya dengan guru, dengung yang berlebihan dan suara bising mengakibatkan pemahaman materi yang diajarkan kurang.

Kebanyakan orang dewasa tidak mengalami kesulitan ini karena orang dewasa sudah memiliki kemampuan untuk menebak kata-kata apa yang disampaikan oleh pembicara walaupun tidak terdengar dengan jelas.

Solusinya adalah mendesain ruang kelas secara akustik

Sejak awal siaran radio, para penyiar sampai pada kesimpulan bahwa jika sumber siarannya tidak jelas dan ringkas, pesannya akan hilang. Untuk mengatasi masalah ini, panel akustik penyerap dipasang pada permukaan dinding studio siaran untuk mengurangi pantulan dan meningkatkan kejelasan bagi pendengar. Praktik ini berlanjut hingga hari ini dan praktik yang sama dilakukan baik jika Anda mengajar di ruang kelas, menyampaikan pesan di rumah ibadah atau menyiarkan kelas pembelajaran jarak jauh melalui internet.

 

Solusi populer adalah menggunakan panel akustik di langit-langit. Manfaat tambahan dari jarak antara panel dan beton jika panel digantung meningkatkan performa absorpsi panel. Contohnya, hal ini sangat efektif di kafetaria yang bising. Untuk ruang kelas dengan langit-langit T-bar, dapat digunakan panel akustik sebagai pengganti bahan langit-langit biasa seperti fiber tile yang memantulkan suara. Penempatan panel sebenarnya tidak sepenting yang dibayangkan. Hal yang lebih penting adalah menggunakan ruang yang tersedia untuk peningkatan performa terbaik Anda dengan mendistribusikan panel secara merata di sekitar ruangan.

Ruang kelas yang bebas dari gema dan kebisingan yang berlebihan jauh lebih kondusif untuk pembelajaran dan sangat berkontribusi pada keberhasilan siswa yang lebih baik – baik jika siswa tersebut memiliki masalah belajar ataupun tidak. Mengurangi tingkat suara di ruang belajar juga mempermudah pengajaran, mengurangi stres dan kelelahan guru, serta secara signifikan mengurangi kelelahan mendengarkan bagi siswa dan guru. Ketika Anda mempertimbangkan manfaat untuk guru dan siswa, dan biaya yang relatif rendah untuk pemasangan dan perawatan akustik, solusi praktis untuk sekolah dan institusi pasca sekolah yang peduli untuk mencapai hasil maksimal dari siswa mereka sebetulnya telah tersedia di pasaran.

 

Credit : James Wright, Business development executive at Primacoustic

KONSULTAN AKUSTIK ARSITEKTURAL (SEJARAH DAN GARIS BESAR)

By | All, Articles, Uncategorized | No Comments

Profesi konsultan akustik arsitektural di indonesia mulai berkembang pada tahun 1990an walaupun fakta sebenarnya di negara lain, sudah dikenal sejak tahun 1950an bertepatan dengan selesainya perang dunia ke II. Pada awalnya profesi ini mulai dikenal saat arsitek dan pemerintah memerlukan individu atau perusahaan untuk meneliti dan mempelajari solusi akustik yang praktis (applicable) di bidang bising transportasi, perumahan, dan elektronik.


Sekarang konsultan akustik arsitektural secara garis besar bisa dibilang sudah mulai dewasa dalam bisnis konstruksi bangunan, namun masih terus tumbuh dengan bertambahnya populasi manusia di dunia dan orang-orang mulai sensitif dan menjadi pemilih untuk dapat menempati ruangan dan bangunan dengan kualitas akustik yang baik.


Ilmu tentang akustik arsitektural mencakup analisa dan desain akustik pada bangunan yang akan dibangun ataupun sudah terbangun. Jasa konsultasi akustik arsitektural dapat dikategorikan kedalam beberapa kelompok kerja yaitu:


1. Pengetesan performa akustik dari sebuah produk atau material
2. Pengendalian bising terkait sistem transportasi
3. Pengendalian bising dari peralatan mekanik di dalam dan di luar bangunan
4. Pengendalian bising lingkungan di sekitar bangunan
5. Pengendalian getaran/seismik bangunan
6. Pengelolaan pantulan suara di dalam ruangan untuk mencegah gaung panjang dan gema


Artikel tentang profesi konsultan akustik akan kami bagi menjadi 3 bagian untuk mempermudah pembaca dalam mencerna tentang apa yang kami lakukan sebagai konsultan akustik di bidang arsitektural. Secara garis besar rangkumannya adalah sebagai berikut:
I. Kebutuhan dari Klien (Mengapa dan kapan klien membutuhkan konsultasi akustik)
– Untuk dapat mencapai kualitas akustik yang tepat pada ruangan di dalam bangunan
– Untuk dapat menentukan ruangan mana yang akan dilakukan evalusi akustik, karena tidak semua ruangan membutuhkan evaluasi akustik. (budget saving?)
– Untuk mengendalikan bising dari fasilitas bangunan yang berdekatan dengan sumber suara
– untuk memperbaiki masalah suara di fasilitas yang sudah terbangun (renovasi akustik)
– Untuk mengikut sertakan informasi dalam dokumen tentang dampak akustik dari bangunan tersebut terhadap lingkungan sekitar atau sebaliknya.

II. Keahlian (Apa ilmu dan pengetahuan yang dibutuhkan dari seorang/perusahaan konsultasi akustik arsitektural)
– Pemahaman mendasar tentang teori dan prilaku gelombang suara di dalam dan luar lingkungan
– Latar belakang Science, Matematika, dan Engineering
– Pengetahuan tentang arsitektur, musik, desain interior, dan teknik konstruksi
– Pemahaman tentang sistem peralatan mekanikal gedung
– Kemampuan mengoprasikan alat ukur suara beserta metode pengukurannya
– Kemampuan untuk dapat menjelaskan informasi dan teknikal akustik ke orang yang awam tentang akustik (The most important part!)

III. Ruang lingkup kerja (Apa saja yang harus dikerjakan oleh seorang/perusahaan konsultasi akustik arsitektural)
– Menentukan target/kriteria akustik dan merumuskan masalah yang sudah ada ataupun yang akan terjadi nantinya
– Mengembangkan rekomendasi treatment akustik untuk mencapai targetnya
– Menyajikan gambar detail dari rekomendasi akustik
– Mereferensikan dan memastikan jika material dari treatment akustik tersebut dapat diaplikasikan dan tersedia di pasar
– Memastikan kesesuaian treatment akustik yang terpasang dengan gambar detail perencanaan
– Melakukan pengukuran akustik untuk mengkuantifikasikan treatment tersebut sesuai dengan apa yang sebelumnya direncakan
Setiap bagian di atas akan kami coba jelaskan secara detail dalam artikel selanjutnya, dengan harapan klien atau calon klien kami mengetahui pekerjaan konsultan akustik yang sebenarnya dan dapat memilih konsultan akustik yang tepat untuk proyek mereka. see you soon! 😊

Helmholtz Resonator

By | Articles, blog, Kebisingan, News, Uncategorized, Vibration | No Comments

Peredam resonansi adalah yang paling kuat dari teknologi penyerapan frekuensi rendah. Pound untuk pound dan kaki persegi per kaki persegi, peredam resonansi tidak dapat disesuaikan untuk penyerapan frekuensi rendah. Mereka kadang-kadang disebut peredam resonansi. Kita berbicara tentang absorpsi frekuensi rendah nyata yang mewakili semua frekuensi di bawah 100 Hz. Peredam resonansi berbeda dari peredam lainnya. Mereka bekerja paling baik di area dengan tekanan suara ruangan tinggi, bukan area kecepatan suara tinggi seperti peredam berpori yang menangani frekuensi menengah dan tinggi.

Getaran & Tekanan Suara

Penyerap resonansi adalah sistem getaran yang “berjalan” pada tekanan suara. Karena ilmu getaran akan memberi tahu kita, penyerap resonansi adalah massa yang bergetar melawan pegas. Massa adalah kabinet dan dinding depan atau diafragma. Pegas adalah udara di dalam rongga penyerap resonansi. Jika Anda mengubah massa getar dan kekakuan pegas, Anda dapat mengontrol dan menyetel penyerap resonansi ke frekuensi resonansi pilihan. Massa internal atau kedalaman kabinet menentukan frekuensi desain. Pegas atau udara internal dan rongga digunakan untuk mencapai laju penyerapan di atas unit yang dirancang untuk frekuensi resonansi. Ada tiga jenis peredam resonansi: Helmholtz dan Diafragma dan Membran.

Helmholtz / Membran

Resonator Helm adalah kotak atau tabung dengan bukaan atau celah pada mulutnya. Udara memasuki slot yang memiliki lebar, panjang, dan kedalaman yang dihitung. Slot dipasang ke kabinet atau silinder dengan lebar dan kedalaman berbeda. Botol kokas kaca adalah contoh bagus resonator Helmholtz. Ini adalah penyerap resonansi atau seperti yang beberapa orang sebut sebagai penyerap resonansi. Frekuensi atau resonansi ditentukan oleh dimensi slot bersama dengan kabinet atau kedalaman silinder. Helm adalah frekuensi tertentu dan cakupan pita frekuensi sempit. Penyerap membran bekerja mirip dengan diafragma. Ia memiliki selaput yang kemudian bergetar sebagai simpati terhadap tekanan suara. Selaput getar ini dipasang pada lemari yang memiliki kedalaman tertentu dan bahan pengisi. Penyerap diafragma bekerja mirip dengan membran dengan kinerja lebih per kaki persegi.

Hitung frekuensi resonansi Helmholtz Slot Absorber

Rumus Frekuensi Resonan

fo = 2160 * akar persegi (r / ((d * 1.2 * D) * (r + w)))

fo = frekuensi resonansi

r = lebar celah

d = ketebalan bilah

1.2 = koreksi mulut

D = kedalaman rongga

w = lebar bilah

2160 = c / (2 * PI) tetapi dibulatkan

c = kecepatan suara dalam inci / detik

Jika celah bervariasi, katakanlah 5mm, 10mm, 15mm, 20mm dan dinding miring seperti yang ditunjukkan di bawah ini, resonator low mid band lebar dibuat yang masih menjaga frekuensi tinggi tetap hidup.

 

Ingat rongga belakang harus kedap udara!

Dengan mengerjakan lebar slat dan celah slat yang berbeda, Anda dapat membuat resonator menengah rendah broadband pada frekuensi tertentu.

Credit : mh-Audio.nl , acousticfields

Akustik Kamar Hotel – bagaimana kebisingan memengaruhi kenyamanan seseorang di hotel

By | Articles, Environmental Noise, Kebisingan, News, Uncategorized, Vibration, Voice | No Comments

Hotel telah memainkan peran penting selama pandemi saat ini. Di negara-negara tertentu, pemerintah daerah telah mengumumkan kewajiban bagi mereka yang masuk dari luar negeri untuk melakukan karantina hotel. Mengambil Malaysia sebagai contoh, wisatawan yang memasuki negara terlepas dari negara mana pun diharuskan menjalani karantina hotel hingga 10 hari (per Januari 2021), di mana otoritas lokal akan mengatur kamar untuk mereka kecuali jika pelancong memilih Paket Premium yang tentunya harganya lebih mahal dari standar. Wisatawan harus melakukan tes COVID di antaranya untuk memastikan bahwa mereka negatif COVID dan mengisolasi mereka di hotel akan memastikan bahwa tidak akan ada kemungkinan penyebaran virus ke publik karena semua pelancong harus dianggap sebagai pembawa risiko potensial. .

Kenyamanan kamar hotel

Mungkin banyak yang bertanya-tanya: Bagaimana kebersihan ruangan? Apakah makanan yang disediakan enak? Bagaimana dengan kekuatan Wi-Fi di sana?

Namun ada satu hal yang terkadang diabaikan orang: Kebisingan. Dari studi yang dilakukan oleh J.D. Power North American Hotel Guest Satisfaction Survey, secara konsisten menunjukkan bahwa keluhan tentang masalah kebisingan secara signifikan kurang dilaporkan, dan pada akhirnya hampir tidak terselesaikan (Simonsen, 2019). Bayangkan tinggal di ruang tertutup selama lebih dari 10 hari, di mana Anda perlu mengalami kebisingan terus-menerus dari tetangga Anda, atau dari luar ruangan seperti kebisingan lalu lintas atau konstruksi, bagaimana perasaan Anda? Melihat beberapa postingan ulasan hotel di Grup Dukungan Karantina Malaysia (MQSG) yang dibuat untuk membantu pelancong yang datang ke Malaysia, tampaknya ada banyak postingan yang mengeluhkan gangguan kebisingan selama masa karantina mereka. Masalah khas yang dihadapi oleh anggota meliputi:

  1. Kebisingan lalu lintas – hotel terletak di sebelah jalan yang sibuk
  2. Kebisingan konstruksi di siang hari dari situs terdekat
  3. Tetangga yang keras – berbicara dengan keras terutama pada jam-jam tidur

Tepatnya, ini adalah gangguan serupa yang akan dialami di rumah hunian.

Untuk masa tinggal jangka pendek, ini mungkin bukan menjadi perhatian utama, tetapi ini adalah kasus yang sama sekali berbeda untuk karantina. Jumlah kebisingan yang tidak wajar setiap hari dalam jangka panjang, terutama setelah penerbangan yang lelah dan transisi di bandara, akan menyebabkan keadaan yang tidak diinginkan pada kesehatan seseorang (fisik dan mental).

Kebisingan dan Gangguan Tidur

Bagi orang yang sangat sensitif terhadap kebisingan, hal pertama yang dapat diamati adalah mereka tidak bisa tidur atau bahkan istirahat dengan nyenyak. Hal ini akan mengakibatkan kurang tidur, yang secara perlahan menguras energi untuk melakukan tugas sehari-hari. Menurut Hume, banyak dari bidang penelitian yang menyatakan bahwa gangguan tidur akibat kebisingan lingkungan memiliki efek paling merugikan bagi kesehatan. Memiliki tidur malam yang tidak terganggu bahkan dianggap sebagai hak dasar dan prasyarat untuk memastikan kesehatan dan kesejahteraan yang berkelanjutan (Hume, 2010). Hume menyebutkan bahwa polusi suara dapat digambarkan sebagai “wabah modern yang tidak terlihat” yang dapat mengganggu proses kognitif sehingga mengganggu kualitas tidur.

Untuk mengatasi masalah kebisingan yang mempengaruhi kualitas tidur, Organisasi Kesehatan Dunia (WHO – Kantor Eropa) telah membawa para ahli dengan dokumen yang relevan dalam beberapa tahun terakhir untuk membuat Panduan Kebisingan Malam untuk Eropa. Pedoman tersebut berisi ulasan terbaru tentang gangguan kebisingan dan potensi risiko bagi kesehatan manusia. Di bawah ini adalah empat rentang tingkat suara eksternal yang terus-menerus di malam hari, yang berkaitan dengan kebisingan malam dan efek kesehatan populasi:

<30 dB – tidak ada efek biologis substansial yang dapat diharapkan

30-40 dB – efek utama pada tidur mulai muncul dan efek samping pada kelompok rentan

40-55 dB – peningkatan tajam dalam efek merugikan kesehatan sementara kelompok rentan menjadi sangat terpengaruh

> 55dB – efek kesehatan yang merugikan sering terjadi dengan persentase penduduk yang sangat terganggu

Pedoman ini membantu untuk memahami pengaruh kebisingan pada tidur, meskipun sebagian besar topik ini masih mengandalkan pemahaman sepenuhnya tentang dasar-dasar sifat tidur.

Solusi Akustik untuk Hotel

Sebagaimana disebutkan pada bagian sebelumnya, keluhan kebisingan kamar hotel terutama meliputi kebisingan lalu lintas, kebisingan dari tetangga dan kebisingan konstruksi. Karena suara bergerak dalam bentuk gelombang, peredaman suara akan menjadi salah satu konsep terbaik untuk bertindak sebagai penghalang yang secara efektif dapat menghentikan gelombang suara memasuki ruangan dari luar.
Biasanya, ada empat metode untuk mencapai efek kedap suara untuk kamar hotel (SoundGuard, 2019):
• Penyerapan – menambahkan bahan isolasi suara seperti wol mineral atau fiberglass untuk penyerapan suara, sehingga mencegah suara lewat
• Redaman – gelombang suara sering menyebabkan getaran di antara partikel udara. Redaman membantu mengurangi atau menghilangkan efek getaran dengan bertindak sebagai penghalang yang tidak bergetar
• Decoupling – Dalam istilah awam, ini juga berarti memisahkan dinding dengan menambahkan lapisan isolasi di antara dua lapisan drywall.
• Massa – Memanfaatkan material yang lebih tebal, lebih berat, atau lebih padat untuk memblokir suara

Saat memilih bahan yang tepat untuk insulasi, penting untuk memperhatikan peringkat Sound Transmission Class (STC). Peringkat STC menentukan keefektifan material dalam mengurangi suara di udara. Semakin rendah peringkat STC, semakin sedikit suara yang dapat diblokir secara efektif. Oleh karena itu, untuk mendapatkan hasil isolasi yang baik, sebaiknya menggunakan material dengan nilai STC yang lebih tinggi.

Kapan Anda harus menerapkan solusi akustik?

Idealnya, yang terbaik adalah memulai dari awal, yaitu selama tahap perencanaan proyek (ya, bahkan sebelum Anda mulai membangunnya!). Mengutip kalimat yang dikatakan oleh Scott Rosenberg, presiden Jonathan Nehmer + Associates, dan kepala sekolah dengan Desain HVS, “Anda harus memikirkan dinding dalam seperti di luar” (Fox, 2018). Hal ini dikatakan untuk hotel bergaya atrium yang biasanya berstruktur seperti ruang gema raksasa, di mana kebisingan dari lobi dapat menjalar ke suite penthouse karena strukturnya. Dalam tahap perencanaan, mengalokasikan bagian mana dari hotel yang dituju juga penting untuk memastikan Anda menyimpan suara di tempat yang tepat, dan di tempat lain. Misalnya, penting untuk menempatkan fasilitas seperti gym, pub, atau bahkan spa secara strategis sehingga kebisingan dari tempat-tempat tersebut tidak akan memengaruhi tamu yang menginap di kamar hotel. Jika Anda benar-benar harus meletakkannya di atas / di bawah ruangan, pastikan menggunakan dinding atau langit-langit yang terisolasi dengan baik.

Untuk hotel-hotel yang sudah ada, waktu lain yang tepat untuk meningkatkan akustik hotel adalah selama periode renovasi. Karena Anda mengambil langkah untuk meningkatkan tampilan dan struktur hotel, mengapa tidak mempertimbangkan peredaman suara juga? Ini pasti akan membantu meningkatkan kepuasan pelanggan selama mereka tinggal.

Area yang dapat dipertimbangkan untuk kedap suara hotel selama renovasi meliputi:

  • Lantai – menambahkan alas kedap suara
  • Langit-langit – menggunakan metode decoupling (drywall berlapis ganda)
  • Pintu – beralih ke pintu berat inti padat dengan perapat
  • Dinding – menambahkan sekat antar dinding / gunakan cat kedap suara

Bagaimana Anda tahu jika hotel Anda memerlukan perbaikan akustik?

Meskipun beberapa mungkin baru mulai menangani masalah setelah mendapat keluhan yang signifikan dari pelanggan, pemilik hotel harus mempertimbangkan untuk mengambil inisiatif untuk mengetahui kondisi kebisingan di dalam gedung. Awal yang baik adalah melakukan tes pengukuran kebisingan untuk memantau kondisi di setiap ruangan. Memiliki data kebisingan dari pengukuran akan membantu Anda memahami apa situasinya, dan bagaimana Anda harus mengatasinya. Di sinilah konsultan akustik harus turun tangan.
Disarankan untuk berkonsultasi dengan spesialis akustik untuk mendapatkan solusi yang paling sesuai untuk casing Anda, karena tidak semua solusi dapat diterapkan untuk semua kondisi. Konsultan akustik dapat membantu Anda menganalisis kondisi dengan menggunakan metode seperti pemetaan kebisingan dalam ruangan, penghitungan isolasi material, dan bahkan saran kecil seperti menambahkan jenis furnitur tertentu untuk membantu penyerapan suara di ruangan itu sendiri.

Pengaruh Perbaikan Akustik pada Hotel

Terbukti dengan peningkatan akustik hotel, bisnis juga bisa ditingkatkan. Misalnya, Premier Inn di Inggris telah memelopori desain baru “kamar tidur terapung” pada tahun 2011 di hotelnya di Leicester Square. Desain baru ini memungkinkan hotel untuk mengatasi kebisingan lingkungan dan kebisingan yang datang dari klub malam di lantai dasar. Premier Inn juga telah mengubah fokus mereka dari biaya menjadi kualitas tidur pelanggan, yang memungkinkan mereka menjadi salah satu hotel dengan peringkat terbaik di London (Simonsen, 2019). Dengan demikian, bisnis dan reputasi hotel akan sangat meningkat dengan menjaga aspek kebisingan.

Sekarang, kembali ke topik awal artikel ini. Hotel tidak lagi hanya digunakan sebagai akomodasi untuk liburan atau perjalanan bisnis. Hotel memainkan peran penting selama pandemi ini, menjadi pusat karantina di banyak negara. Oleh karena itu, penting untuk memastikan kenyamanan pelanggan (atau mereka yang berada di bawah karantina) selama mereka menginap, baik secara sukarela maupun tidak. Ulasan mereka membuat banyak perbedaan, yang akan sangat memengaruhi citra hotel bagi publik. Yang terpenting, kamar yang bagus dan kedap suara berarti lebih sedikit kebisingan, menghasilkan kualitas hidup dan tidur yang lebih baik. Oleh karena itu, pemilik hotel dihimbau untuk menyelidiki aspek akustik properti mereka, untuk diri mereka sendiri, dan untuk pelanggan.

References

Fox, J. T. (2018, July 17). Careful hotel design keeps noise in check. Retrieved February 4, 2021, from Hotel Management: https://www.hotelmanagement.net/design/careful-hotel-design-keeps-noise-check


Hume, K. (2010). Sleep disturbance due to noise: Current issues and future research. Noise Health, 12(47), 70-76. Retrieved February 2, 2021, from https://www.noiseandhealth.org/article.asp?issn=1463-1741;year=2010;volume=12;issue=47;spage=70;epage=76;aulast=Hume

Simonsen, J. (2019, June 20). Why and how to reduce noise in hotel rooms. Retrieved February 3, 2021, from Rockwool: https://www.rockwool.com/group/advice-and-inspiration/blog/why-and-how-to-reduce-noise-in-hotel-rooms/

SoundGuard. (2019). Hotel Sound Reduction – How to Soundproof a Hotel Room. Retrieved February 3, 2021, from SoundGuard: https://soundguard.io/hotel-sound-reduction-soundproof-hotel-room/

Structure borne Noise: The way it is propagate and how we can control this particular vibration.

By | blog, Kebisingan, News, Uncategorized, Vibration | No Comments

Suara bertransmisi melalui dua cara. Pertama, suara merambat melalui udara (airborne sound). Ketika noise yang ditimbulkan berasal dari rambatannya melalui udara maka perlu dikembangkan sebuah transmission loss dari ruang sumber ke ruang penerima untuk mengurangi noise yang merambat. Transmission loss adalah parameter penting dari sebuah partisi seperti pada dinding dan slab. Cara transmisi kedua adalah suara yang merambat melalui struktur (structure borne sound). Structure borne sound adalah suara yang ditimbukan dari sumber getaran dan impact sound. Sumber tersebut bertransmisi melalui bagian struktur yang solid pada bangunan seperti, lantai, column, dinding, pipa dan duct.

Lalu bagaimana structure borne sound dapat merambat?

Pada mesin beroperasi dan menimbulkan getaran yang berosilasi (tahap Generation) kemudian mentransfer energi osilasi tersebut ke struktur pasif (tahap Transmission), kemudia energi didistribusikan melalui system structural (Propagationi) terakhir energi tersebut menggetarkan udara dan menjadi suara (Radiation). Berikut adalah proses dari proses structure borne sound.

Seperti kita ketahui bahwa cepat rambat suara di benda solid lebih cepat dibandingkan dengan suara di udara. Sumber dari structure borne sound dalam bangunan antara lain:

1. Pumps: reciprocrating and centrifugal
2. Compressor: AHU, cooling tower
3. Electrical: Motor, generator, transformaers, UP
4. Mesin lainnya.


Structure borne ini akan menimbulkan efek di antaranya efeknya terhadap struktur dan efek akustiknya. Pada struktur akan terjadi kerusakan pada pondasi, terdapatnya retakan pada bagian bangunan, dan masalah yang akan mempersulit dalam menanganinya. Untuk efek dari akustiknya adalah noise yang ditimbulkan akan mengganggu penghuni bangunan, noise mungkin akan berinterferensi dengan instrument lain, suara getaran menyebabkan tekanan darah inggi, sakit kepala, dan tuli.


Lalu bagaimana mengurangi getaran atau suara yang ditimbulkan dari struktur?


Hal yang paling utama untuk dilakukan adalah getarannya harus diisolaasi. Terdapat beberapa Teknik berbeda dalam mengisolasinya untuk mengurangi noise dan getaran yang diklasifikasikan ke dalam 2 hal.
1. Active vibration isolation
Cara ini dilakukan dengan modifikasi pada mesin getaran untuk mengontrol amplitude getarannya. Dengan itu efek getaran akan terminimalisasi. Sehingga cara ini adalah dengan menangani mesin itu sendiri
2. Passive vibration isolation.
Jika active vibration isolation adalah modifikasi pada mesin untuk mengontrol getaran maka pada passive vibration isolation adalah dengan mengontrol amplitude selama propagasinya dengan mengisolasi getaran dari mesin yang bergetar. Jadi yang dilakukan adlaah dengan meminimalkan propagasi suara dari ruang sumber ke ruang penerima dengan mengubah konfigurasi bangunan, dan element bangunan lainnya.
Dalam menangani masalah getaran dan structure borne sound maka perlu diketahui berdasarkan sumber, jalur transmisinya dan penerima.


a. Sumber: sumber ini biasanya berasal dari getaran mekanis atau gangguan aliran fluida yang dihasilkan secara internal oleh mesin. Sebagai contoh adlaah pipa yang mengalirkan air atau udara. Apabila alirannya berupa aliran laminar maka akan lebih mudah dalam mengontrolnya namun apabila alirannya turbulensi makan akan lebih sulit menanganinya.
b. Jalur Transmisi: jalur transmisi adalah jalur struktural atau udara yang digunakan untuk mentransmisikan noise ke penerima. Terkadang melalui struktur, terkadang melalui udara dan terkadang melalui struktur dan udara. Jalur ini perlu dikaji untuk mengetahui caranya menjalar dari sumber ke penerima dan bagaimana penangannya.
c. Penerima: sistem yang merespons kebisingan atau dapat disebut sebagai area sensitive terhadap kebisngan sumber


Solusi yang dapat dilakukan untuk menangani getarannya berdasarkan bagiannya adalah


1. Solusi yang dilakukan pada sumber:
a. Memindahkan mesin di atas pondasi yang kokoh dan sejauh mungkin dari area sensitive. Setiap mesin yang menimbulkan getaran harus diletakkan pada lantai yang paling bawah (ground floor). Hal ini dikarenakan terdapat semacam solid base yang menambah stiffness pada lantai dasar. Jadi secara otomatis getarannya akan terhenti atau getaran tidak merambat dari mesin ke komponen lain. Meskipun akan tetap merambat, akan tetapi rambatannya tidak sebesar jika diletakkan di lantai atas yang bisa menyebar ke bawah. Jika mesin yang menimbulkan getaran ini diletakkan di lantai atas, maka transmisi yang akan ditanggung struktur sangat tinggi karana seluruh support dan stiffness-nya akan hilang sehingga dapat berdampak pada lantai di bagian bawah.
Apabila dalam kasus tertentu, mesin tidak dapat diletakkan di lantai paling bawah, mesinnya harus diletakkan di sudut ruangan tidak boleh di tengah slab. Mesin yang diletakkan di tengah akan memproduksi suara dari struktur yang tinggi karena stiffness dibawahnya relative rendah apalagi jika berada di lantai atas. Mesin setidaknya harus dikeliling dua sisi column atau balok karena hal ini akan menambahkan stiffness dan akan memberikan semacam pengurangan dalam perambatan getaran.
b. Jika diperlukan ganti mesin dengan kualitas yang lebih tinggi dan tipe mesin yang lebih sedikit menimbulkan getaran dan kebisingan. Selain itu, dengan mengubah kecepatan operasi mesin dan frekuensi operasinya untuk menghindari resonansi pada struktur.
c. Menggunakan active vibration control dan absorber untuk mereduksi noise yang terjadi sesuai dengan perhitungan yang belaku.

2. Solusi yang dilakukan pada jalur transmisi
a. Meminimalkan transmisi getaran dengan memasang isolator berupa spring dan atau inertia block yang dipasang pada bagian mesin. Mesin tetap mengeluaran getarannya sendiri namun ketika getarannya merambat ke elemen bagian dari bangunan sejumlah energinya akan diserap oleh spring atau inertia block.
b. Structural discontinuity: memutuskan rambatanannya dari struktur dalam benuk sambungan konstruksi untuk menghentikan penyebaran suara yang ditanggung struktur.

c. Mounting operation: cara ini paling sering digunakan untuk menghentikan atau mengurangi isolasi getaran. Hal ini bisa dilakukan dengan menambahkan spring atau beberapa jenis bantalan logam (Inertia block) di bawah mesin seperti gambar di bawah ini.

3. Solusi yang dilakukan pada ruang penerima
a. Menambahkan redaman structural di area penerima untuk meminimalkankan efek getaran
b. Mengisolasi area penerima dari jalur perambatan getaran.

Pada pembahasan selanjutnya, kita akan membahas bagaimana perhitungan yang tepat dalam mengisolasi getaran dan structure borne noise untuk mereduksi dampak yang diterima.

Ditulis oleh :

Adetia Alfadenata (Acoustic Engineer) | GEONOISE INDONESIA | email: support.id@geonoise.asia

Evaluasi Getaran Pada Tubuh Manusia

By | Articles, Environmental Noise, Kebisingan, Uncategorized, Vibration | No Comments

Getaran adalah bentuk gelombang mekanik dengan gerakan bolak-balik yang mentransmisikan energi yang sama di sekitar kesetimbangan di mana benda berada posisi yang diam. 

Biasanya getaran yang dirasakan pada jalan raya akibat aktifitas kendaraan dapat ditoleransi yang tinggi dari manusia. Akan tetapi, apabila getaran tersebut berada pada bangunan maka manusia akan cenderung lebih sensitive dan merasa terganggu dengan getaran sedikit saja. Getaran pada bangunan dapat dideteksi oleh penghuni dan dapat memberikan dampak bagi meraka seperti kualitas hidupnya dapat berkurang dan juga efisiensi mereka dalam bekerja.

Devinisi getaran, mengapa penting mengaji getaran

Terdapat dua jenis getaran yang di analisis pada tubuh manusia:

1.Hand arm vibration

Pemaparan getaran hanya di bagian tubuh tertentu, yaitu lengan dan bahu.

2.Whole body vibration

Whole body vibration adalah pemaparan getaran ke seluruh tubuh. Hal ini dapat dirasakan ketika seseorang sedang berdiri, duduk atau telentang. Pembahasan kali ini akan berfokus pada whole body vibration atau getaran pada seluruh tubuh. Umumnya, toleransi tubuh terhadap getaran yang terjadi pada lalu lintas akibat kendaraan lebih tinggi dibandingkan dengan getaran yang dirasakan di dalam Gedung. Getaran yang secara sensitive dapat dirasakan oleh penghuni gedung atau bangunan dapat mengurangi kualitas kerja, kenyamanan dan juga kesehatan.

Nilai getaran yang disebabkan oleh mesin berada pada frekuensi rendah. Umumnya, getaran diemisikan melalui airborne dan merambat ke bagian gedung. Dalam mengevaluasi getaran maka perlu diketahui tipe getaran yang terjadi. Evaluasi ini sangat diperlukan untuk mereduksi getaran yang bisa terjadi atau mitigasi untuk kondisi eksisting dalam rencana penggunaan lahan akibat getaran oleh konstruksi yang baru beroperasi.

Tipe gataran berdasarkan durasi rambatannya:

Pengukuran getaran dilakukan pada 3 sumbu axis, yaitu x, y, dan z dengan seluruh frequencyweighted. Getaran ini diukur dan ditentukan berdasarkan tipe getarannya untuk evaluasi dan langkah mitigasi selanjutnya. Tipe getaran tersebut adalah:

1.Continuous vibration

Countinous vibration memiliki sinyal getaran dengan magnitude yang bervariasi atau konstan terhadap waktu (daytime/night-time) dalam suatu periode. Tipe getaran ini biasanya dinilai berdasarkan pembobotan percepatan rms ( . Tabel 1 menunjukkan nilai yang diizinkan dan nilai maksimalnya dengan frekuensi 1-80 Hz. Nilai  ditentukan bedasarkan fungsi ruangnya seperti yang diperlihatkan pada Tabel 1.

Efek getaran akan memiliki efek yang berbeda untuk setiap frekuensi. Maka dari itu, perlu dilakukan evaluasi untuk setiap frekuensi.

Tabel 1. Preferred and maximum weighted rms values for continuous and impulsive

 

 

 

*daytime (7 am-10pm), night-time (10 pm-7 am)

2.Impulsive vibration

Getaran yang bersifat impulsive atau seperti guncangan dengan durasi getaran kurang dari 2 detik dan tidak lebih dari 3 kali per periode waktu (daytime/night-time). Nilai getaran juga ditentukan seperti yang ditunjukkan pada Tabel 1.

3.Intermitten vibration

Getaran yang terjadi sesekali dan memiliki magnitude yang juga bervariasi atau konstan terhadap waktu. Getaran ini dinilai dengan menggunakan Vibration Dose Value (VDV)

Di mana    T= total periode (s)

                  VDV= (m/s1,75) pada weighted

Perlu diperhatikan bahwa nilai VDV lebih sensitive terhadap puncak (peak) dalam gelombang akselerasi. VDV mengakumulasi nilai getaran selama periode siang dan malam hari. Nilai VDV yang dapat diterima diperlihatkan pada Tabel 2

Tabel 2. Acceptable vibration dose values for intermittent vibration (m/s1.75)

 

 

 

*daytime (7 am-10pm), night-time (10 pm-7 am)

Jika terdapat getaran yang berulang maka total vibration untuk tiap periode adalah

VDVi= Individual Dose Value

Target desain harus ditentukan pada preffered value. Nilai maksimum hanya diizinkan untuk beberapa kasus tertentu seperti, getaran yang terjadi berlangsung singkat atau dalam jangka waktu yang tidak lama dan atau segala langkah untuk desain mengurangi getaran dilakukan semaksimal mungkin.Apabila nilai getaran melebih preffered value maka perlu dilakukan langkah mitigasi. Pada pembahasan selanjutnya, kita akan membahas bagaimana menentukan langkah mitigasi.

Reference

[1]      Assessing Vibration : a technical guideline. Department of Environment and Conservation, 2006.

 

[2]      The British Standards Institution, “Evaluation Of Human Exposure To Vibration In Buildings (1 Hz to 80 Hz) – Guide For The Evaluation Of Human Exposure To Whole-Body Vibration,” p., 1992.

 

[3]      ISO 2631-1, “Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-body Vibration-Part 1.” 1997.