Treatment Akustik di Sekolah

By | Articles, blog, Environmental Noise, News, Uncategorized, Vibration | No Comments

By Nichada Klombunchong

Beberapa generasi siswa dan guru telah mengalami masalah yang disebabkan oleh kebisingan dan desain akustik yang buruk dalam lingkungan pendidikan. Meskipun masalah telah dikenali selama lebih dari 100 tahun, akustik di ruang kelas tetap kurang diperhatikan di gedung-gedung lama, bahkan banyak sekolah-sekolah baru. Sebuah studi yang dirilis tahun 2012 ““Essex Study-Optimal classroom acoustics for all” mendefinisikan kebutuhan dan manfaat dari ruang kelas yang mempertimbangkan kualitas akustik. Studi tersebut mengamati dampak pengurangan waktu dengung (RT) di lingkungan ruang kelas. Kesimpulan yang diambil setelah dilakukan pengukuran akustik dan juga survei adalah adanya manfaat yang jelas jika kualitas akustik di ruang belajar ditingkatkan. Sederhananya, waktu dengung yang berlebih di ruang kelas memiliki efek negatif pada kesehatan dan performa, baik untuk siswa maupun guru.

Gaung disebabkan pantulan suara dari permukaan keras ke permukaan keras lainnya yang menyebabkan suara terdengar menumpuk sehingga dipersepsikan sebagai suara yang membingungkan dan sulit dipahami. Permukaan keras seperti jendela, papan tulis, balok beton, dan dinding gipsum yang ditemukan di sebagian besar ruang kelas tidak menyerap energi suara dan akibatnya, suara tersebut dipantulkan kembali ke dalam ruangan, sampai ke telinga berkali-kali dalam interval yang berjarak hanya dalam orde milidetik. Hal ini menyebabkan suara yang terdengar bergaung sehingga otak manusia mengalami kesulitan membedakan informasi primer dan membedakannya dari gaung. Masalah ini diperburuk ketika alat bantu dengar dan implan koklea digunakan. Gema berlebih juga memengaruhi siswa dengan masalah pemrosesan pendengaran, ADHD, dan tantangan belajar lainnya. Faktanya, semua siswa mendapat manfaat dengan menurunkan gaung dan meningkatkan kejelasan.

Dengung diukur dalam hubungannya dengan waktu. Waktu dengung (RT60) adalah waktu yang dibutuhkan suara untuk meluruh hingga 60dB di ruang tertentu. Semakin besar waktu dengung, semakin banyak gaung di sebuah ruangan, dan semakin sulit seseorang untuk mendengarkan informasi verbal. Waktu dengung suatu ruangan akan bergantung pada variabel seperti volume ruang kelas dan material yang digunakan di dalam ruang kelas, apakah merefleksikan atau menyerap suara.

Pengaruhnya terhadap Siswa dan Guru

Kebanyakan kegiatan belajar terjadi melalui komunikasi verbal. Secara tradisional, ruang kelas belum dirancang dengan memperhatikan bagaimana ruangan bersuara atau bagaimana hal itu dapat memengaruhi siswa dan guru yang menggunakannya. Diketahui bahwa jika siswa berada dekat dengan guru, siswa cenderung memiliki keterlibatan dan pemahaman materi yang lebih baik. Karena sebagian besar kelas memiliki 30 siswa atau lebih, sulit untuk membuat setiap siswa berada dekat dengan guru. Untuk siswa di bagian belakang kelas, tingkat suara yang mencapai siswa akan berkurang sebanyak 20dB dibandingkan sumbernya. Otak kemudian harus membedakan apakah suara yang diterima adalah sumber yang ingin didengar atau suara yang memantul dari dinding. Ketika salah satu faktor dalam gema alami di dalam ruangan, keterlambatan suara mencapai telinga, bersama dengan gangguan seperti kebisingan HVAC, suara tingkat dasar kelas dan kebisingan yang berasal dari luar pintu dan jendela, tidaklah mengherankan untuk menemukan bahwa banyak siswa yang tidak mendengarkan materi yang diajarkan kepada mereka.

Dan ini baru permulaan. Saat tingkat suara sekitar di kelas meningkat, guru secara alami meningkatkan tingkat suaranya. ‘Obrolan di kelas’ secara alami meningkat untuk mengimbangi dan masalah memperburuk ke titik di mana guru dan siswa mulai kehilangan konsentrasi.

Anak-anak Tidak Mendengar layaknya Orang Dewasa

Saat Anda mempertimbangkan masalah akustik yang dijelaskan, penelitian menunjukkan bahwa sebanyak 30% siswa mungkin benar-benar kesulitan dalam memahami pesan guru mereka. Kejelasan yang buruk karena jaraknya dengan guru, dengung yang berlebihan dan suara bising mengakibatkan pemahaman materi yang diajarkan kurang.

Kebanyakan orang dewasa tidak mengalami kesulitan ini karena orang dewasa sudah memiliki kemampuan untuk menebak kata-kata apa yang disampaikan oleh pembicara walaupun tidak terdengar dengan jelas.

Solusinya adalah mendesain ruang kelas secara akustik

Sejak awal siaran radio, para penyiar sampai pada kesimpulan bahwa jika sumber siarannya tidak jelas dan ringkas, pesannya akan hilang. Untuk mengatasi masalah ini, panel akustik penyerap dipasang pada permukaan dinding studio siaran untuk mengurangi pantulan dan meningkatkan kejelasan bagi pendengar. Praktik ini berlanjut hingga hari ini dan praktik yang sama dilakukan baik jika Anda mengajar di ruang kelas, menyampaikan pesan di rumah ibadah atau menyiarkan kelas pembelajaran jarak jauh melalui internet.

 

Solusi populer adalah menggunakan panel akustik di langit-langit. Manfaat tambahan dari jarak antara panel dan beton jika panel digantung meningkatkan performa absorpsi panel. Contohnya, hal ini sangat efektif di kafetaria yang bising. Untuk ruang kelas dengan langit-langit T-bar, dapat digunakan panel akustik sebagai pengganti bahan langit-langit biasa seperti fiber tile yang memantulkan suara. Penempatan panel sebenarnya tidak sepenting yang dibayangkan. Hal yang lebih penting adalah menggunakan ruang yang tersedia untuk peningkatan performa terbaik Anda dengan mendistribusikan panel secara merata di sekitar ruangan.

Ruang kelas yang bebas dari gema dan kebisingan yang berlebihan jauh lebih kondusif untuk pembelajaran dan sangat berkontribusi pada keberhasilan siswa yang lebih baik – baik jika siswa tersebut memiliki masalah belajar ataupun tidak. Mengurangi tingkat suara di ruang belajar juga mempermudah pengajaran, mengurangi stres dan kelelahan guru, serta secara signifikan mengurangi kelelahan mendengarkan bagi siswa dan guru. Ketika Anda mempertimbangkan manfaat untuk guru dan siswa, dan biaya yang relatif rendah untuk pemasangan dan perawatan akustik, solusi praktis untuk sekolah dan institusi pasca sekolah yang peduli untuk mencapai hasil maksimal dari siswa mereka sebetulnya telah tersedia di pasaran.

 

Credit : James Wright, Business development executive at Primacoustic

KONSULTAN AKUSTIK ARSITEKTURAL (SEJARAH DAN GARIS BESAR)

By | All, Articles, Uncategorized | No Comments

Profesi konsultan akustik arsitektural di indonesia mulai berkembang pada tahun 1990an walaupun fakta sebenarnya di negara lain, sudah dikenal sejak tahun 1950an bertepatan dengan selesainya perang dunia ke II. Pada awalnya profesi ini mulai dikenal saat arsitek dan pemerintah memerlukan individu atau perusahaan untuk meneliti dan mempelajari solusi akustik yang praktis (applicable) di bidang bising transportasi, perumahan, dan elektronik.


Sekarang konsultan akustik arsitektural secara garis besar bisa dibilang sudah mulai dewasa dalam bisnis konstruksi bangunan, namun masih terus tumbuh dengan bertambahnya populasi manusia di dunia dan orang-orang mulai sensitif dan menjadi pemilih untuk dapat menempati ruangan dan bangunan dengan kualitas akustik yang baik.


Ilmu tentang akustik arsitektural mencakup analisa dan desain akustik pada bangunan yang akan dibangun ataupun sudah terbangun. Jasa konsultasi akustik arsitektural dapat dikategorikan kedalam beberapa kelompok kerja yaitu:


1. Pengetesan performa akustik dari sebuah produk atau material
2. Pengendalian bising terkait sistem transportasi
3. Pengendalian bising dari peralatan mekanik di dalam dan di luar bangunan
4. Pengendalian bising lingkungan di sekitar bangunan
5. Pengendalian getaran/seismik bangunan
6. Pengelolaan pantulan suara di dalam ruangan untuk mencegah gaung panjang dan gema


Artikel tentang profesi konsultan akustik akan kami bagi menjadi 3 bagian untuk mempermudah pembaca dalam mencerna tentang apa yang kami lakukan sebagai konsultan akustik di bidang arsitektural. Secara garis besar rangkumannya adalah sebagai berikut:
I. Kebutuhan dari Klien (Mengapa dan kapan klien membutuhkan konsultasi akustik)
– Untuk dapat mencapai kualitas akustik yang tepat pada ruangan di dalam bangunan
– Untuk dapat menentukan ruangan mana yang akan dilakukan evalusi akustik, karena tidak semua ruangan membutuhkan evaluasi akustik. (budget saving?)
– Untuk mengendalikan bising dari fasilitas bangunan yang berdekatan dengan sumber suara
– untuk memperbaiki masalah suara di fasilitas yang sudah terbangun (renovasi akustik)
– Untuk mengikut sertakan informasi dalam dokumen tentang dampak akustik dari bangunan tersebut terhadap lingkungan sekitar atau sebaliknya.

II. Keahlian (Apa ilmu dan pengetahuan yang dibutuhkan dari seorang/perusahaan konsultasi akustik arsitektural)
– Pemahaman mendasar tentang teori dan prilaku gelombang suara di dalam dan luar lingkungan
– Latar belakang Science, Matematika, dan Engineering
– Pengetahuan tentang arsitektur, musik, desain interior, dan teknik konstruksi
– Pemahaman tentang sistem peralatan mekanikal gedung
– Kemampuan mengoprasikan alat ukur suara beserta metode pengukurannya
– Kemampuan untuk dapat menjelaskan informasi dan teknikal akustik ke orang yang awam tentang akustik (The most important part!)

III. Ruang lingkup kerja (Apa saja yang harus dikerjakan oleh seorang/perusahaan konsultasi akustik arsitektural)
– Menentukan target/kriteria akustik dan merumuskan masalah yang sudah ada ataupun yang akan terjadi nantinya
– Mengembangkan rekomendasi treatment akustik untuk mencapai targetnya
– Menyajikan gambar detail dari rekomendasi akustik
– Mereferensikan dan memastikan jika material dari treatment akustik tersebut dapat diaplikasikan dan tersedia di pasar
– Memastikan kesesuaian treatment akustik yang terpasang dengan gambar detail perencanaan
– Melakukan pengukuran akustik untuk mengkuantifikasikan treatment tersebut sesuai dengan apa yang sebelumnya direncakan
Setiap bagian di atas akan kami coba jelaskan secara detail dalam artikel selanjutnya, dengan harapan klien atau calon klien kami mengetahui pekerjaan konsultan akustik yang sebenarnya dan dapat memilih konsultan akustik yang tepat untuk proyek mereka. see you soon! 😊

Helmholtz Resonator

By | Articles, blog, Kebisingan, News, Uncategorized, Vibration | No Comments

Peredam resonansi adalah yang paling kuat dari teknologi penyerapan frekuensi rendah. Pound untuk pound dan kaki persegi per kaki persegi, peredam resonansi tidak dapat disesuaikan untuk penyerapan frekuensi rendah. Mereka kadang-kadang disebut peredam resonansi. Kita berbicara tentang absorpsi frekuensi rendah nyata yang mewakili semua frekuensi di bawah 100 Hz. Peredam resonansi berbeda dari peredam lainnya. Mereka bekerja paling baik di area dengan tekanan suara ruangan tinggi, bukan area kecepatan suara tinggi seperti peredam berpori yang menangani frekuensi menengah dan tinggi.

Getaran & Tekanan Suara

Penyerap resonansi adalah sistem getaran yang “berjalan” pada tekanan suara. Karena ilmu getaran akan memberi tahu kita, penyerap resonansi adalah massa yang bergetar melawan pegas. Massa adalah kabinet dan dinding depan atau diafragma. Pegas adalah udara di dalam rongga penyerap resonansi. Jika Anda mengubah massa getar dan kekakuan pegas, Anda dapat mengontrol dan menyetel penyerap resonansi ke frekuensi resonansi pilihan. Massa internal atau kedalaman kabinet menentukan frekuensi desain. Pegas atau udara internal dan rongga digunakan untuk mencapai laju penyerapan di atas unit yang dirancang untuk frekuensi resonansi. Ada tiga jenis peredam resonansi: Helmholtz dan Diafragma dan Membran.

Helmholtz / Membran

Resonator Helm adalah kotak atau tabung dengan bukaan atau celah pada mulutnya. Udara memasuki slot yang memiliki lebar, panjang, dan kedalaman yang dihitung. Slot dipasang ke kabinet atau silinder dengan lebar dan kedalaman berbeda. Botol kokas kaca adalah contoh bagus resonator Helmholtz. Ini adalah penyerap resonansi atau seperti yang beberapa orang sebut sebagai penyerap resonansi. Frekuensi atau resonansi ditentukan oleh dimensi slot bersama dengan kabinet atau kedalaman silinder. Helm adalah frekuensi tertentu dan cakupan pita frekuensi sempit. Penyerap membran bekerja mirip dengan diafragma. Ia memiliki selaput yang kemudian bergetar sebagai simpati terhadap tekanan suara. Selaput getar ini dipasang pada lemari yang memiliki kedalaman tertentu dan bahan pengisi. Penyerap diafragma bekerja mirip dengan membran dengan kinerja lebih per kaki persegi.

Hitung frekuensi resonansi Helmholtz Slot Absorber

Rumus Frekuensi Resonan

fo = 2160 * akar persegi (r / ((d * 1.2 * D) * (r + w)))

fo = frekuensi resonansi

r = lebar celah

d = ketebalan bilah

1.2 = koreksi mulut

D = kedalaman rongga

w = lebar bilah

2160 = c / (2 * PI) tetapi dibulatkan

c = kecepatan suara dalam inci / detik

Jika celah bervariasi, katakanlah 5mm, 10mm, 15mm, 20mm dan dinding miring seperti yang ditunjukkan di bawah ini, resonator low mid band lebar dibuat yang masih menjaga frekuensi tinggi tetap hidup.

 

Ingat rongga belakang harus kedap udara!

Dengan mengerjakan lebar slat dan celah slat yang berbeda, Anda dapat membuat resonator menengah rendah broadband pada frekuensi tertentu.

Credit : mh-Audio.nl , acousticfields

Akustik Kamar Hotel – bagaimana kebisingan memengaruhi kenyamanan seseorang di hotel

By | Articles, Environmental Noise, Kebisingan, News, Uncategorized, Vibration, Voice | No Comments

Hotel telah memainkan peran penting selama pandemi saat ini. Di negara-negara tertentu, pemerintah daerah telah mengumumkan kewajiban bagi mereka yang masuk dari luar negeri untuk melakukan karantina hotel. Mengambil Malaysia sebagai contoh, wisatawan yang memasuki negara terlepas dari negara mana pun diharuskan menjalani karantina hotel hingga 10 hari (per Januari 2021), di mana otoritas lokal akan mengatur kamar untuk mereka kecuali jika pelancong memilih Paket Premium yang tentunya harganya lebih mahal dari standar. Wisatawan harus melakukan tes COVID di antaranya untuk memastikan bahwa mereka negatif COVID dan mengisolasi mereka di hotel akan memastikan bahwa tidak akan ada kemungkinan penyebaran virus ke publik karena semua pelancong harus dianggap sebagai pembawa risiko potensial. .

Kenyamanan kamar hotel

Mungkin banyak yang bertanya-tanya: Bagaimana kebersihan ruangan? Apakah makanan yang disediakan enak? Bagaimana dengan kekuatan Wi-Fi di sana?

Namun ada satu hal yang terkadang diabaikan orang: Kebisingan. Dari studi yang dilakukan oleh J.D. Power North American Hotel Guest Satisfaction Survey, secara konsisten menunjukkan bahwa keluhan tentang masalah kebisingan secara signifikan kurang dilaporkan, dan pada akhirnya hampir tidak terselesaikan (Simonsen, 2019). Bayangkan tinggal di ruang tertutup selama lebih dari 10 hari, di mana Anda perlu mengalami kebisingan terus-menerus dari tetangga Anda, atau dari luar ruangan seperti kebisingan lalu lintas atau konstruksi, bagaimana perasaan Anda? Melihat beberapa postingan ulasan hotel di Grup Dukungan Karantina Malaysia (MQSG) yang dibuat untuk membantu pelancong yang datang ke Malaysia, tampaknya ada banyak postingan yang mengeluhkan gangguan kebisingan selama masa karantina mereka. Masalah khas yang dihadapi oleh anggota meliputi:

  1. Kebisingan lalu lintas – hotel terletak di sebelah jalan yang sibuk
  2. Kebisingan konstruksi di siang hari dari situs terdekat
  3. Tetangga yang keras – berbicara dengan keras terutama pada jam-jam tidur

Tepatnya, ini adalah gangguan serupa yang akan dialami di rumah hunian.

Untuk masa tinggal jangka pendek, ini mungkin bukan menjadi perhatian utama, tetapi ini adalah kasus yang sama sekali berbeda untuk karantina. Jumlah kebisingan yang tidak wajar setiap hari dalam jangka panjang, terutama setelah penerbangan yang lelah dan transisi di bandara, akan menyebabkan keadaan yang tidak diinginkan pada kesehatan seseorang (fisik dan mental).

Kebisingan dan Gangguan Tidur

Bagi orang yang sangat sensitif terhadap kebisingan, hal pertama yang dapat diamati adalah mereka tidak bisa tidur atau bahkan istirahat dengan nyenyak. Hal ini akan mengakibatkan kurang tidur, yang secara perlahan menguras energi untuk melakukan tugas sehari-hari. Menurut Hume, banyak dari bidang penelitian yang menyatakan bahwa gangguan tidur akibat kebisingan lingkungan memiliki efek paling merugikan bagi kesehatan. Memiliki tidur malam yang tidak terganggu bahkan dianggap sebagai hak dasar dan prasyarat untuk memastikan kesehatan dan kesejahteraan yang berkelanjutan (Hume, 2010). Hume menyebutkan bahwa polusi suara dapat digambarkan sebagai “wabah modern yang tidak terlihat” yang dapat mengganggu proses kognitif sehingga mengganggu kualitas tidur.

Untuk mengatasi masalah kebisingan yang mempengaruhi kualitas tidur, Organisasi Kesehatan Dunia (WHO – Kantor Eropa) telah membawa para ahli dengan dokumen yang relevan dalam beberapa tahun terakhir untuk membuat Panduan Kebisingan Malam untuk Eropa. Pedoman tersebut berisi ulasan terbaru tentang gangguan kebisingan dan potensi risiko bagi kesehatan manusia. Di bawah ini adalah empat rentang tingkat suara eksternal yang terus-menerus di malam hari, yang berkaitan dengan kebisingan malam dan efek kesehatan populasi:

<30 dB – tidak ada efek biologis substansial yang dapat diharapkan

30-40 dB – efek utama pada tidur mulai muncul dan efek samping pada kelompok rentan

40-55 dB – peningkatan tajam dalam efek merugikan kesehatan sementara kelompok rentan menjadi sangat terpengaruh

> 55dB – efek kesehatan yang merugikan sering terjadi dengan persentase penduduk yang sangat terganggu

Pedoman ini membantu untuk memahami pengaruh kebisingan pada tidur, meskipun sebagian besar topik ini masih mengandalkan pemahaman sepenuhnya tentang dasar-dasar sifat tidur.

Solusi Akustik untuk Hotel

Sebagaimana disebutkan pada bagian sebelumnya, keluhan kebisingan kamar hotel terutama meliputi kebisingan lalu lintas, kebisingan dari tetangga dan kebisingan konstruksi. Karena suara bergerak dalam bentuk gelombang, peredaman suara akan menjadi salah satu konsep terbaik untuk bertindak sebagai penghalang yang secara efektif dapat menghentikan gelombang suara memasuki ruangan dari luar.
Biasanya, ada empat metode untuk mencapai efek kedap suara untuk kamar hotel (SoundGuard, 2019):
• Penyerapan – menambahkan bahan isolasi suara seperti wol mineral atau fiberglass untuk penyerapan suara, sehingga mencegah suara lewat
• Redaman – gelombang suara sering menyebabkan getaran di antara partikel udara. Redaman membantu mengurangi atau menghilangkan efek getaran dengan bertindak sebagai penghalang yang tidak bergetar
• Decoupling – Dalam istilah awam, ini juga berarti memisahkan dinding dengan menambahkan lapisan isolasi di antara dua lapisan drywall.
• Massa – Memanfaatkan material yang lebih tebal, lebih berat, atau lebih padat untuk memblokir suara

Saat memilih bahan yang tepat untuk insulasi, penting untuk memperhatikan peringkat Sound Transmission Class (STC). Peringkat STC menentukan keefektifan material dalam mengurangi suara di udara. Semakin rendah peringkat STC, semakin sedikit suara yang dapat diblokir secara efektif. Oleh karena itu, untuk mendapatkan hasil isolasi yang baik, sebaiknya menggunakan material dengan nilai STC yang lebih tinggi.

Kapan Anda harus menerapkan solusi akustik?

Idealnya, yang terbaik adalah memulai dari awal, yaitu selama tahap perencanaan proyek (ya, bahkan sebelum Anda mulai membangunnya!). Mengutip kalimat yang dikatakan oleh Scott Rosenberg, presiden Jonathan Nehmer + Associates, dan kepala sekolah dengan Desain HVS, “Anda harus memikirkan dinding dalam seperti di luar” (Fox, 2018). Hal ini dikatakan untuk hotel bergaya atrium yang biasanya berstruktur seperti ruang gema raksasa, di mana kebisingan dari lobi dapat menjalar ke suite penthouse karena strukturnya. Dalam tahap perencanaan, mengalokasikan bagian mana dari hotel yang dituju juga penting untuk memastikan Anda menyimpan suara di tempat yang tepat, dan di tempat lain. Misalnya, penting untuk menempatkan fasilitas seperti gym, pub, atau bahkan spa secara strategis sehingga kebisingan dari tempat-tempat tersebut tidak akan memengaruhi tamu yang menginap di kamar hotel. Jika Anda benar-benar harus meletakkannya di atas / di bawah ruangan, pastikan menggunakan dinding atau langit-langit yang terisolasi dengan baik.

Untuk hotel-hotel yang sudah ada, waktu lain yang tepat untuk meningkatkan akustik hotel adalah selama periode renovasi. Karena Anda mengambil langkah untuk meningkatkan tampilan dan struktur hotel, mengapa tidak mempertimbangkan peredaman suara juga? Ini pasti akan membantu meningkatkan kepuasan pelanggan selama mereka tinggal.

Area yang dapat dipertimbangkan untuk kedap suara hotel selama renovasi meliputi:

  • Lantai – menambahkan alas kedap suara
  • Langit-langit – menggunakan metode decoupling (drywall berlapis ganda)
  • Pintu – beralih ke pintu berat inti padat dengan perapat
  • Dinding – menambahkan sekat antar dinding / gunakan cat kedap suara

Bagaimana Anda tahu jika hotel Anda memerlukan perbaikan akustik?

Meskipun beberapa mungkin baru mulai menangani masalah setelah mendapat keluhan yang signifikan dari pelanggan, pemilik hotel harus mempertimbangkan untuk mengambil inisiatif untuk mengetahui kondisi kebisingan di dalam gedung. Awal yang baik adalah melakukan tes pengukuran kebisingan untuk memantau kondisi di setiap ruangan. Memiliki data kebisingan dari pengukuran akan membantu Anda memahami apa situasinya, dan bagaimana Anda harus mengatasinya. Di sinilah konsultan akustik harus turun tangan.
Disarankan untuk berkonsultasi dengan spesialis akustik untuk mendapatkan solusi yang paling sesuai untuk casing Anda, karena tidak semua solusi dapat diterapkan untuk semua kondisi. Konsultan akustik dapat membantu Anda menganalisis kondisi dengan menggunakan metode seperti pemetaan kebisingan dalam ruangan, penghitungan isolasi material, dan bahkan saran kecil seperti menambahkan jenis furnitur tertentu untuk membantu penyerapan suara di ruangan itu sendiri.

Pengaruh Perbaikan Akustik pada Hotel

Terbukti dengan peningkatan akustik hotel, bisnis juga bisa ditingkatkan. Misalnya, Premier Inn di Inggris telah memelopori desain baru “kamar tidur terapung” pada tahun 2011 di hotelnya di Leicester Square. Desain baru ini memungkinkan hotel untuk mengatasi kebisingan lingkungan dan kebisingan yang datang dari klub malam di lantai dasar. Premier Inn juga telah mengubah fokus mereka dari biaya menjadi kualitas tidur pelanggan, yang memungkinkan mereka menjadi salah satu hotel dengan peringkat terbaik di London (Simonsen, 2019). Dengan demikian, bisnis dan reputasi hotel akan sangat meningkat dengan menjaga aspek kebisingan.

Sekarang, kembali ke topik awal artikel ini. Hotel tidak lagi hanya digunakan sebagai akomodasi untuk liburan atau perjalanan bisnis. Hotel memainkan peran penting selama pandemi ini, menjadi pusat karantina di banyak negara. Oleh karena itu, penting untuk memastikan kenyamanan pelanggan (atau mereka yang berada di bawah karantina) selama mereka menginap, baik secara sukarela maupun tidak. Ulasan mereka membuat banyak perbedaan, yang akan sangat memengaruhi citra hotel bagi publik. Yang terpenting, kamar yang bagus dan kedap suara berarti lebih sedikit kebisingan, menghasilkan kualitas hidup dan tidur yang lebih baik. Oleh karena itu, pemilik hotel dihimbau untuk menyelidiki aspek akustik properti mereka, untuk diri mereka sendiri, dan untuk pelanggan.

References

Fox, J. T. (2018, July 17). Careful hotel design keeps noise in check. Retrieved February 4, 2021, from Hotel Management: https://www.hotelmanagement.net/design/careful-hotel-design-keeps-noise-check


Hume, K. (2010). Sleep disturbance due to noise: Current issues and future research. Noise Health, 12(47), 70-76. Retrieved February 2, 2021, from https://www.noiseandhealth.org/article.asp?issn=1463-1741;year=2010;volume=12;issue=47;spage=70;epage=76;aulast=Hume

Simonsen, J. (2019, June 20). Why and how to reduce noise in hotel rooms. Retrieved February 3, 2021, from Rockwool: https://www.rockwool.com/group/advice-and-inspiration/blog/why-and-how-to-reduce-noise-in-hotel-rooms/

SoundGuard. (2019). Hotel Sound Reduction – How to Soundproof a Hotel Room. Retrieved February 3, 2021, from SoundGuard: https://soundguard.io/hotel-sound-reduction-soundproof-hotel-room/

Structure borne Noise: The way it is propagate and how we can control this particular vibration.

By | blog, Kebisingan, News, Uncategorized, Vibration | No Comments

Suara bertransmisi melalui dua cara. Pertama, suara merambat melalui udara (airborne sound). Ketika noise yang ditimbulkan berasal dari rambatannya melalui udara maka perlu dikembangkan sebuah transmission loss dari ruang sumber ke ruang penerima untuk mengurangi noise yang merambat. Transmission loss adalah parameter penting dari sebuah partisi seperti pada dinding dan slab. Cara transmisi kedua adalah suara yang merambat melalui struktur (structure borne sound). Structure borne sound adalah suara yang ditimbukan dari sumber getaran dan impact sound. Sumber tersebut bertransmisi melalui bagian struktur yang solid pada bangunan seperti, lantai, column, dinding, pipa dan duct.

Lalu bagaimana structure borne sound dapat merambat?

Pada mesin beroperasi dan menimbulkan getaran yang berosilasi (tahap Generation) kemudian mentransfer energi osilasi tersebut ke struktur pasif (tahap Transmission), kemudia energi didistribusikan melalui system structural (Propagationi) terakhir energi tersebut menggetarkan udara dan menjadi suara (Radiation). Berikut adalah proses dari proses structure borne sound.

Seperti kita ketahui bahwa cepat rambat suara di benda solid lebih cepat dibandingkan dengan suara di udara. Sumber dari structure borne sound dalam bangunan antara lain:

1. Pumps: reciprocrating and centrifugal
2. Compressor: AHU, cooling tower
3. Electrical: Motor, generator, transformaers, UP
4. Mesin lainnya.


Structure borne ini akan menimbulkan efek di antaranya efeknya terhadap struktur dan efek akustiknya. Pada struktur akan terjadi kerusakan pada pondasi, terdapatnya retakan pada bagian bangunan, dan masalah yang akan mempersulit dalam menanganinya. Untuk efek dari akustiknya adalah noise yang ditimbulkan akan mengganggu penghuni bangunan, noise mungkin akan berinterferensi dengan instrument lain, suara getaran menyebabkan tekanan darah inggi, sakit kepala, dan tuli.


Lalu bagaimana mengurangi getaran atau suara yang ditimbulkan dari struktur?


Hal yang paling utama untuk dilakukan adalah getarannya harus diisolaasi. Terdapat beberapa Teknik berbeda dalam mengisolasinya untuk mengurangi noise dan getaran yang diklasifikasikan ke dalam 2 hal.
1. Active vibration isolation
Cara ini dilakukan dengan modifikasi pada mesin getaran untuk mengontrol amplitude getarannya. Dengan itu efek getaran akan terminimalisasi. Sehingga cara ini adalah dengan menangani mesin itu sendiri
2. Passive vibration isolation.
Jika active vibration isolation adalah modifikasi pada mesin untuk mengontrol getaran maka pada passive vibration isolation adalah dengan mengontrol amplitude selama propagasinya dengan mengisolasi getaran dari mesin yang bergetar. Jadi yang dilakukan adlaah dengan meminimalkan propagasi suara dari ruang sumber ke ruang penerima dengan mengubah konfigurasi bangunan, dan element bangunan lainnya.
Dalam menangani masalah getaran dan structure borne sound maka perlu diketahui berdasarkan sumber, jalur transmisinya dan penerima.


a. Sumber: sumber ini biasanya berasal dari getaran mekanis atau gangguan aliran fluida yang dihasilkan secara internal oleh mesin. Sebagai contoh adlaah pipa yang mengalirkan air atau udara. Apabila alirannya berupa aliran laminar maka akan lebih mudah dalam mengontrolnya namun apabila alirannya turbulensi makan akan lebih sulit menanganinya.
b. Jalur Transmisi: jalur transmisi adalah jalur struktural atau udara yang digunakan untuk mentransmisikan noise ke penerima. Terkadang melalui struktur, terkadang melalui udara dan terkadang melalui struktur dan udara. Jalur ini perlu dikaji untuk mengetahui caranya menjalar dari sumber ke penerima dan bagaimana penangannya.
c. Penerima: sistem yang merespons kebisingan atau dapat disebut sebagai area sensitive terhadap kebisngan sumber


Solusi yang dapat dilakukan untuk menangani getarannya berdasarkan bagiannya adalah


1. Solusi yang dilakukan pada sumber:
a. Memindahkan mesin di atas pondasi yang kokoh dan sejauh mungkin dari area sensitive. Setiap mesin yang menimbulkan getaran harus diletakkan pada lantai yang paling bawah (ground floor). Hal ini dikarenakan terdapat semacam solid base yang menambah stiffness pada lantai dasar. Jadi secara otomatis getarannya akan terhenti atau getaran tidak merambat dari mesin ke komponen lain. Meskipun akan tetap merambat, akan tetapi rambatannya tidak sebesar jika diletakkan di lantai atas yang bisa menyebar ke bawah. Jika mesin yang menimbulkan getaran ini diletakkan di lantai atas, maka transmisi yang akan ditanggung struktur sangat tinggi karana seluruh support dan stiffness-nya akan hilang sehingga dapat berdampak pada lantai di bagian bawah.
Apabila dalam kasus tertentu, mesin tidak dapat diletakkan di lantai paling bawah, mesinnya harus diletakkan di sudut ruangan tidak boleh di tengah slab. Mesin yang diletakkan di tengah akan memproduksi suara dari struktur yang tinggi karena stiffness dibawahnya relative rendah apalagi jika berada di lantai atas. Mesin setidaknya harus dikeliling dua sisi column atau balok karena hal ini akan menambahkan stiffness dan akan memberikan semacam pengurangan dalam perambatan getaran.
b. Jika diperlukan ganti mesin dengan kualitas yang lebih tinggi dan tipe mesin yang lebih sedikit menimbulkan getaran dan kebisingan. Selain itu, dengan mengubah kecepatan operasi mesin dan frekuensi operasinya untuk menghindari resonansi pada struktur.
c. Menggunakan active vibration control dan absorber untuk mereduksi noise yang terjadi sesuai dengan perhitungan yang belaku.

2. Solusi yang dilakukan pada jalur transmisi
a. Meminimalkan transmisi getaran dengan memasang isolator berupa spring dan atau inertia block yang dipasang pada bagian mesin. Mesin tetap mengeluaran getarannya sendiri namun ketika getarannya merambat ke elemen bagian dari bangunan sejumlah energinya akan diserap oleh spring atau inertia block.
b. Structural discontinuity: memutuskan rambatanannya dari struktur dalam benuk sambungan konstruksi untuk menghentikan penyebaran suara yang ditanggung struktur.

c. Mounting operation: cara ini paling sering digunakan untuk menghentikan atau mengurangi isolasi getaran. Hal ini bisa dilakukan dengan menambahkan spring atau beberapa jenis bantalan logam (Inertia block) di bawah mesin seperti gambar di bawah ini.

3. Solusi yang dilakukan pada ruang penerima
a. Menambahkan redaman structural di area penerima untuk meminimalkankan efek getaran
b. Mengisolasi area penerima dari jalur perambatan getaran.

Pada pembahasan selanjutnya, kita akan membahas bagaimana perhitungan yang tepat dalam mengisolasi getaran dan structure borne noise untuk mereduksi dampak yang diterima.

Ditulis oleh :

Adetia Alfadenata (Acoustic Engineer) | GEONOISE INDONESIA | email: support.id@geonoise.asia

Evaluasi Getaran Pada Tubuh Manusia

By | Articles, Environmental Noise, Kebisingan, Uncategorized, Vibration | No Comments

Getaran adalah bentuk gelombang mekanik dengan gerakan bolak-balik yang mentransmisikan energi yang sama di sekitar kesetimbangan di mana benda berada posisi yang diam. 

Biasanya getaran yang dirasakan pada jalan raya akibat aktifitas kendaraan dapat ditoleransi yang tinggi dari manusia. Akan tetapi, apabila getaran tersebut berada pada bangunan maka manusia akan cenderung lebih sensitive dan merasa terganggu dengan getaran sedikit saja. Getaran pada bangunan dapat dideteksi oleh penghuni dan dapat memberikan dampak bagi meraka seperti kualitas hidupnya dapat berkurang dan juga efisiensi mereka dalam bekerja.

Devinisi getaran, mengapa penting mengaji getaran

Terdapat dua jenis getaran yang di analisis pada tubuh manusia:

1.Hand arm vibration

Pemaparan getaran hanya di bagian tubuh tertentu, yaitu lengan dan bahu.

2.Whole body vibration

Whole body vibration adalah pemaparan getaran ke seluruh tubuh. Hal ini dapat dirasakan ketika seseorang sedang berdiri, duduk atau telentang. Pembahasan kali ini akan berfokus pada whole body vibration atau getaran pada seluruh tubuh. Umumnya, toleransi tubuh terhadap getaran yang terjadi pada lalu lintas akibat kendaraan lebih tinggi dibandingkan dengan getaran yang dirasakan di dalam Gedung. Getaran yang secara sensitive dapat dirasakan oleh penghuni gedung atau bangunan dapat mengurangi kualitas kerja, kenyamanan dan juga kesehatan.

Nilai getaran yang disebabkan oleh mesin berada pada frekuensi rendah. Umumnya, getaran diemisikan melalui airborne dan merambat ke bagian gedung. Dalam mengevaluasi getaran maka perlu diketahui tipe getaran yang terjadi. Evaluasi ini sangat diperlukan untuk mereduksi getaran yang bisa terjadi atau mitigasi untuk kondisi eksisting dalam rencana penggunaan lahan akibat getaran oleh konstruksi yang baru beroperasi.

Tipe gataran berdasarkan durasi rambatannya:

Pengukuran getaran dilakukan pada 3 sumbu axis, yaitu x, y, dan z dengan seluruh frequencyweighted. Getaran ini diukur dan ditentukan berdasarkan tipe getarannya untuk evaluasi dan langkah mitigasi selanjutnya. Tipe getaran tersebut adalah:

1.Continuous vibration

Countinous vibration memiliki sinyal getaran dengan magnitude yang bervariasi atau konstan terhadap waktu (daytime/night-time) dalam suatu periode. Tipe getaran ini biasanya dinilai berdasarkan pembobotan percepatan rms ( . Tabel 1 menunjukkan nilai yang diizinkan dan nilai maksimalnya dengan frekuensi 1-80 Hz. Nilai  ditentukan bedasarkan fungsi ruangnya seperti yang diperlihatkan pada Tabel 1.

Efek getaran akan memiliki efek yang berbeda untuk setiap frekuensi. Maka dari itu, perlu dilakukan evaluasi untuk setiap frekuensi.

Tabel 1. Preferred and maximum weighted rms values for continuous and impulsive

 

 

 

*daytime (7 am-10pm), night-time (10 pm-7 am)

2.Impulsive vibration

Getaran yang bersifat impulsive atau seperti guncangan dengan durasi getaran kurang dari 2 detik dan tidak lebih dari 3 kali per periode waktu (daytime/night-time). Nilai getaran juga ditentukan seperti yang ditunjukkan pada Tabel 1.

3.Intermitten vibration

Getaran yang terjadi sesekali dan memiliki magnitude yang juga bervariasi atau konstan terhadap waktu. Getaran ini dinilai dengan menggunakan Vibration Dose Value (VDV)

Di mana    T= total periode (s)

                  VDV= (m/s1,75) pada weighted

Perlu diperhatikan bahwa nilai VDV lebih sensitive terhadap puncak (peak) dalam gelombang akselerasi. VDV mengakumulasi nilai getaran selama periode siang dan malam hari. Nilai VDV yang dapat diterima diperlihatkan pada Tabel 2

Tabel 2. Acceptable vibration dose values for intermittent vibration (m/s1.75)

 

 

 

*daytime (7 am-10pm), night-time (10 pm-7 am)

Jika terdapat getaran yang berulang maka total vibration untuk tiap periode adalah

VDVi= Individual Dose Value

Target desain harus ditentukan pada preffered value. Nilai maksimum hanya diizinkan untuk beberapa kasus tertentu seperti, getaran yang terjadi berlangsung singkat atau dalam jangka waktu yang tidak lama dan atau segala langkah untuk desain mengurangi getaran dilakukan semaksimal mungkin.Apabila nilai getaran melebih preffered value maka perlu dilakukan langkah mitigasi. Pada pembahasan selanjutnya, kita akan membahas bagaimana menentukan langkah mitigasi.

Reference

[1]      Assessing Vibration : a technical guideline. Department of Environment and Conservation, 2006.

 

[2]      The British Standards Institution, “Evaluation Of Human Exposure To Vibration In Buildings (1 Hz to 80 Hz) – Guide For The Evaluation Of Human Exposure To Whole-Body Vibration,” p., 1992.

 

[3]      ISO 2631-1, “Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-body Vibration-Part 1.” 1997.

Akustik di Rumah Sakit dan Baku Mutu Kebisingan Rumah Sakit (Permenakes No. 7 / 2019)

By | News, Uncategorized, Vibration | No Comments

Pengaruh Kondisi Akustik di Fasilitas Kesehatan

Kebisingan di fasilitas kesehatan terutama rumah sakit memiliki dampak kepada pasien, tenaga Kesehatan dan juga pengunjung. Gangguan tidur dan naiknya tekanan darah adalah dua contoh dampak yang telah diamati terjadi pada pasien. Sedangkan pada tenaga Kesehatan, kondisi akustik yang buruk dapat menambahkan rasa kelelahan.


Beberapa bukti telah menunjukkan bahwa kesehatan fisiologis pasien terdampak secara negatif karena adanya kebisingan. Sebagai contoh, di sebuah studi, pasien memerlukan waktu pemulihan di rumah sakit setelah operasi katarak Ketika tingkat kebisingan menjadi lebih tinggi karena adanya kebisingan dari konstruksi. Contoh lainnya, ditemukan bahwa ketika kebisingan diatas 60 dBA, diperlukan obat-obatan lebih banyak untuk pasien bedah pada saat proses pemulihan.


Selain memberikan dampak pada kondisi fisiologis pasien, kondisi akustik yang buruk juga mempengaruhi persepsi privasi, kenyamanan dan keamanan untuk pasien dan keluarganya. Secara umum, pasien lebih puas dengan pelayanan Kesehatan oleh petugas jika mereka berada di kondisi akustik yang baik.
Kebisingan juga memiliki konsekuensi pada tenaga Kesehatan. Kebisingan menjadi sumber stress untuk pekerja di rumah sakit dan berpotensi mempengaruhi kemampuannya untuk bekerja secara efektif. Beberapa studi menunjukan adanya relasi antara stress dan rasa terganggu pada perawat dengan kebisingan. Meskipun pada studi lainnya kebisingan tidak mengganggu performa ahli anastesi dan ahli bedah secara signifikan, investigasi ini menunjukan bahwa jika kebisingan berada diatas 77 dBA, seseorang yang hendak melakukan komunikasi verbal harus bersuara cukup keras, dan pada saat yang bersamaan, kejelasan suara ucap berkurang sebesar 23 persen.

Aspek-aspek Utama terkait Akustik yang Perlu Diperhatikan di Rumah Sakit

Aspek-aspek utama yang perlu diperhatikan pada fasilitas Kesehatan adalah sebagai berikut:


1. Tingkat kebisingan: Tingkat kebisingan rata-rata di dalam rumah sakit dilaporkan pada sebuah studi di 2005, bahwa tingkat kebisingan di dalam rumah sakit adalah sekitar 72 dBA di siang hari dan 60 dBA di malam hari. Hal ini berada di luar rekomendasi World Health Organization (WHO) yang merekomendasikan kebisingan pada 35 dBA di siang hari dan 30 dBA di malam hari, dengan tingkat kebisingan puncak tidak melebihi 40 dBA di malam hari.
Perlu diperhatikan bahwa terdapat dua hal berbeda terkait dengan tingkat kebisingan, yang pertama adalah kebisingan latar belakang dari system HVAC, peralatan medis, dan sumber kebisingan lainnya. Kedua adalah kebisingan yang bersifat berselang atau intermittent seperti suara ucap, alarm, telfon, dan lainnya.
Kebisingan di dalam ruangan biasa dideskripsikan menggunakan rating dengan satu angka seperti NC (Noise Criteria) dan RC (Room Criteria), atau kebisingan ekuivalen (LAeq) dengan satuan dBA.


2. Kejelasan berbicara: Komunikasi di rumah sakit diperlukan baik antar tenaga Kesehatan dan juga antara pasien dan petugas di rumah sakit. Perawat dan dokter perlu untuk dapat memahami dan mengambil tindakan berdasarkan informasi auditori di kondisi yang memerlukan kecepatan dan ketepatan yang tinggi.
Kejelasan bicara sering dideskripsikan menggunakan beberapa besaran seperti STI (Speech Transmission Index) dan %ALC (Percentage Articulation Loss of Consonants)


3. Privasi berbicara: Meskipun kejelasan bicara penting untuk orang-orang memerlukan komunikasi satu sama lain, penting juga untuk pembicaraan tersebut tidak terdengar oleh pendengar yang tidak seharusnya. Hal ini diperlukan untuk memastikan pasien dapat mendiskusikan masalah kesehatannya dengan bebas dengan dokternya, tanpa mengkhawatirkan bahwa pembicaraannya dapat terdengar oleh orang lain.
Privasi berbicara yang didapatkan di ruang tertentu diindikasikan menggunakan Privacy Index (PI) yang secara umum membagi privasi berbicara ke empat kategori yaitu:
• Confidential: Pembicaraan dapat terdengar tetapi tidak dapat dipahami di luar ruang tersebut
• Normal: Pembicaraan dapat terdengar dan sebagian dapat dipahami
• Marginal atau poor: Sebagian besar pembicaraan dapat terdengar dan dapat dipahami oleh orang lain
• No privacy: Semua pembicaraan dapat terdengar dan dipahami

Contoh-contoh Strategi Desain untuk Memperbaiki Lingkungan Akustik

Beberapa strategi dalam melakukan desain yang telah menunjukkan perbaikan pada kondisi akustik di rumah sakit adalah sebagai berikut:


1. Penggunaan material penyerap suara di dalam ruangan: Salah satu kondisi yang menyebabkan buruknya kondisi akustik di rumah sakit adalah karena kebanyakan permukaan ruang yang bersifat reflektif. Salah satu solusi yang paling umum diterapkan adalah dengan menggunakan ceiling (plafon) yang menyerap suara. Sebagai contoh, sebuah studi di Swedia menunjukan bahwa dengan menggunakan ceiling yang menyerap suara, pasien pada sebuah intensive coronary care unit (CCU) menunjukkan kondisi fisik yang lebih baik.
Kemampuan material untuk menyerap suara biasanya dinyatakan dengan NRC (Noise Reduction Coefficient)


2. Perencanaan ruang: Untuk meningkatkan kondisi akustik di rumah sakit, perencanaan ruang dapat memberikan dampak yang besar. Hal ini termasuk penentuan lokasi ruang-ruang yang akan bersebelahan, dengan mempertimbangkan fungsi ruang-ruang yang akan bersebelahan, tingkat kebutuhan privasi bicara, dan kebisingan latar belakang (background noise), dan faktor lainnya. Salah satu hal yang mendukung kondisi akustik secara signifikan adalah dengan menyediakan ruangan untuk tiap pasien (single-patient room) dibandingkan dengan ruangan dengan banyak tempat tidur. Ruangan pribadi pada umumnya memiliki tingkat kebisingan yang lebih rendah, dipersepsikan lebih privat, dan memungkinkan untuk percakapan dilakukan tanpa terdengar oleh orang diluar ruangan.
Dari sudut pandang desain insulasi suara, ruangan perlu dipisahkan oleh partisi dengan performa insulasi akustik yang cukup, dengan perhatian untuk menghindarkan kebocoran suara pada partisi. Performa material biasanya diukur dengan rating seperti STC (Sound Transmission Class) atau Rw (Weighted Sound Reduction Index)


3. Menghilangkan atau mengurangi sumber kebisingan: Sumber kebisingan yang umum berada di dalam rumah sakit adalah sistem paging, peralatan kesehatan dan pembicaraan antar tenaga kesehatan. Sumber kebisingan dapat dikurangi dengan mengganti sistem paging dengan sistem komunikasi nirkabel yang dibawa oleh staff, mematikan peralatan ketika tidak digunakan, melakukan pembicaraan di ruang tertutup dan mengedukasi tenaga kesehatan mengenai signifikansi aspek kebisingan sehingga diharapkan tenaga kesehatan berbicara dengan tingkat suara tidak terlalu keras.


4. Penggunaan sistem sound-masking: sound-masking (menambahkan suara di ruangan dengan sengaja) memiliki potensi untuk dapat meningkatkan privasi berbicara untuk pasien, meskipun belum cukup bukti saintifik untuk tingkat efektivitasnya. Sound-masking juga dapat menurunkan distraksi pada pasien untuk kebisingan yang bersifat berselang. Meskipun demikian, penggunaan sistem sound-masking perlu dengan hati-hati mempertimbangkan hal-hal lain seperti kejelasan berbicara antar tenaga kesehatan, ataupun dampaknya pada sistem monitoring pasien.

Peraturan Baku Mutu Kebisingan di Rumah Sakit di Indonesia

Di Indonesia, tingkat kebisingan di rumah sakit diregulasi melalui Peraturan Menteri Kesehatan No. 7 Tahun 2019 tentang kesehatan lingkungan rumah sakit. Baku mutu tingkat kebisingan pada peraturan tersebut adalah sebagai berikut:

Reference
A Joseph and R Ulrich. Sound Control for Improved Outcomes in Healthcare Settings. The Center for health Design. 2007
Fife, D., and E. Rappaport. 1976. Noise and hospital stay. American Journal of Public Health 66(7):680–81.Minckley (1968)
Murthy, V. S., K. L. Malhotra, I. Bala, and M. Raghunathan. 1995. Detrimental effects of noise on anesthetists. Canadian Journal of Anaesthesia 42:608–11.
Berglund, B., T. Lindvall, D. H. Schwelaand, and T.K. Goh. 1999. Guidelines for community noise. In Protection of the human environment. Geneva, Switzerland: World Health Organization.
Hagerman, I., G. Rasmanis, V. Blomkvist, R. S. Ulrich, C. A. Eriksen, and T. Theorell. 2005. Influence of coronary intensive care acoustics on the quality of care and physiological states of patients. International Journal of Cardiology 98:267–270
Peraturan Menteri Kesehatan Republik Indonesia No 7 Tahun 2019